# Properties

 Label 7200.2.d.q Level 7200 Weight 2 Character orbit 7200.d Analytic conductor 57.492 Analytic rank 0 Dimension 6 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7200 = 2^{5} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7200.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$57.4922894553$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.0.399424.1 Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$2^{8}$$ Twist minimal: no (minimal twist has level 120) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{5} q^{7} +O(q^{10})$$ $$q -\beta_{5} q^{7} + ( \beta_{2} - \beta_{3} - \beta_{5} ) q^{11} -\beta_{1} q^{13} + ( -\beta_{2} - \beta_{3} ) q^{17} + ( -\beta_{2} + \beta_{5} ) q^{19} + ( \beta_{2} - \beta_{5} ) q^{23} + \beta_{2} q^{29} + ( 2 + \beta_{1} ) q^{31} + ( -1 + \beta_{4} ) q^{37} + ( 3 + \beta_{1} - \beta_{4} ) q^{41} + ( -1 - \beta_{1} + \beta_{4} ) q^{43} + ( \beta_{2} - 2 \beta_{3} - \beta_{5} ) q^{47} + ( -5 - 2 \beta_{1} ) q^{49} + 2 q^{53} + ( -\beta_{2} - \beta_{3} - \beta_{5} ) q^{59} + ( 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{5} ) q^{61} + 4 q^{67} + ( -1 + \beta_{1} + \beta_{4} ) q^{71} + 3 \beta_{2} q^{73} + ( -6 + 2 \beta_{1} - 2 \beta_{4} ) q^{77} + ( 6 - \beta_{1} ) q^{79} + ( -5 - \beta_{1} + \beta_{4} ) q^{83} + ( -5 + \beta_{1} - \beta_{4} ) q^{89} + ( 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{5} ) q^{91} + ( 3 \beta_{2} + 2 \beta_{3} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q + O(q^{10})$$ $$6q + 12q^{31} - 8q^{37} + 20q^{41} - 8q^{43} - 30q^{49} + 12q^{53} + 24q^{67} - 8q^{71} - 32q^{77} + 36q^{79} - 32q^{83} - 28q^{89} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} - 2 x^{5} + 3 x^{4} - 6 x^{3} + 6 x^{2} - 8 x + 8$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$-\nu^{4} + 2 \nu^{3} - \nu^{2} + 2 \nu - 2$$ $$\beta_{2}$$ $$=$$ $$($$$$-\nu^{5} - 3 \nu^{3} + 4 \nu^{2} - 2 \nu + 8$$$$)/2$$ $$\beta_{3}$$ $$=$$ $$($$$$\nu^{5} - 2 \nu^{4} + 3 \nu^{3} - 6 \nu^{2} + 10 \nu - 8$$$$)/2$$ $$\beta_{4}$$ $$=$$ $$-\nu^{5} + \nu^{4} - \nu^{3} + 5 \nu^{2} + 3$$ $$\beta_{5}$$ $$=$$ $$($$$$3 \nu^{5} - 2 \nu^{4} + 5 \nu^{3} - 6 \nu^{2} + 2 \nu - 12$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{4} + 2 \beta_{3} - \beta_{1} + 3$$$$)/8$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{5} + \beta_{4} + \beta_{2} - 1$$$$)/4$$ $$\nu^{3}$$ $$=$$ $$($$$$\beta_{4} - 2 \beta_{3} - 4 \beta_{2} + 3 \beta_{1} + 11$$$$)/8$$ $$\nu^{4}$$ $$=$$ $$($$$$-\beta_{5} + \beta_{4} - 5 \beta_{2} - 2 \beta_{1} + 7$$$$)/4$$ $$\nu^{5}$$ $$=$$ $$($$$$8 \beta_{5} + 3 \beta_{4} + 2 \beta_{3} + 4 \beta_{2} - 7 \beta_{1} + 17$$$$)/8$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$6401$$ $$6751$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2449.1
 −0.671462 − 1.24464i 1.40680 + 0.144584i 0.264658 + 1.38923i 0.264658 − 1.38923i 1.40680 − 0.144584i −0.671462 + 1.24464i
0 0 0 0 0 4.68585i 0 0 0
2449.2 0 0 0 0 0 3.62721i 0 0 0
2449.3 0 0 0 0 0 0.941367i 0 0 0
2449.4 0 0 0 0 0 0.941367i 0 0 0
2449.5 0 0 0 0 0 3.62721i 0 0 0
2449.6 0 0 0 0 0 4.68585i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 2449.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7200.2.d.q 6
3.b odd 2 1 2400.2.d.f 6
4.b odd 2 1 1800.2.d.q 6
5.b even 2 1 7200.2.d.r 6
5.c odd 4 1 1440.2.k.f 6
5.c odd 4 1 7200.2.k.p 6
8.b even 2 1 7200.2.d.r 6
8.d odd 2 1 1800.2.d.r 6
12.b even 2 1 600.2.d.e 6
15.d odd 2 1 2400.2.d.e 6
15.e even 4 1 480.2.k.b 6
15.e even 4 1 2400.2.k.c 6
20.d odd 2 1 1800.2.d.r 6
20.e even 4 1 360.2.k.f 6
20.e even 4 1 1800.2.k.p 6
24.f even 2 1 600.2.d.f 6
24.h odd 2 1 2400.2.d.e 6
40.e odd 2 1 1800.2.d.q 6
40.f even 2 1 inner 7200.2.d.q 6
40.i odd 4 1 1440.2.k.f 6
40.i odd 4 1 7200.2.k.p 6
40.k even 4 1 360.2.k.f 6
40.k even 4 1 1800.2.k.p 6
60.h even 2 1 600.2.d.f 6
60.l odd 4 1 120.2.k.b 6
60.l odd 4 1 600.2.k.c 6
120.i odd 2 1 2400.2.d.f 6
120.m even 2 1 600.2.d.e 6
120.q odd 4 1 120.2.k.b 6
120.q odd 4 1 600.2.k.c 6
120.w even 4 1 480.2.k.b 6
120.w even 4 1 2400.2.k.c 6
240.z odd 4 1 3840.2.a.bq 3
240.bb even 4 1 3840.2.a.bo 3
240.bd odd 4 1 3840.2.a.bp 3
240.bf even 4 1 3840.2.a.br 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.k.b 6 60.l odd 4 1
120.2.k.b 6 120.q odd 4 1
360.2.k.f 6 20.e even 4 1
360.2.k.f 6 40.k even 4 1
480.2.k.b 6 15.e even 4 1
480.2.k.b 6 120.w even 4 1
600.2.d.e 6 12.b even 2 1
600.2.d.e 6 120.m even 2 1
600.2.d.f 6 24.f even 2 1
600.2.d.f 6 60.h even 2 1
600.2.k.c 6 60.l odd 4 1
600.2.k.c 6 120.q odd 4 1
1440.2.k.f 6 5.c odd 4 1
1440.2.k.f 6 40.i odd 4 1
1800.2.d.q 6 4.b odd 2 1
1800.2.d.q 6 40.e odd 2 1
1800.2.d.r 6 8.d odd 2 1
1800.2.d.r 6 20.d odd 2 1
1800.2.k.p 6 20.e even 4 1
1800.2.k.p 6 40.k even 4 1
2400.2.d.e 6 15.d odd 2 1
2400.2.d.e 6 24.h odd 2 1
2400.2.d.f 6 3.b odd 2 1
2400.2.d.f 6 120.i odd 2 1
2400.2.k.c 6 15.e even 4 1
2400.2.k.c 6 120.w even 4 1
3840.2.a.bo 3 240.bb even 4 1
3840.2.a.bp 3 240.bd odd 4 1
3840.2.a.bq 3 240.z odd 4 1
3840.2.a.br 3 240.bf even 4 1
7200.2.d.q 6 1.a even 1 1 trivial
7200.2.d.q 6 40.f even 2 1 inner
7200.2.d.r 6 5.b even 2 1
7200.2.d.r 6 8.b even 2 1
7200.2.k.p 6 5.c odd 4 1
7200.2.k.p 6 40.i odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(7200, [\chi])$$:

 $$T_{7}^{6} + 36 T_{7}^{4} + 320 T_{7}^{2} + 256$$ $$T_{11}^{6} + 64 T_{11}^{4} + 1088 T_{11}^{2} + 4096$$ $$T_{13}^{3} - 28 T_{13} - 16$$ $$T_{37}^{3} + 4 T_{37}^{2} - 60 T_{37} - 256$$ $$T_{41}^{3} - 10 T_{41}^{2} - 36 T_{41} + 232$$ $$T_{53} - 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ 1
$7$ $$1 - 6 T^{2} + 47 T^{4} - 500 T^{6} + 2303 T^{8} - 14406 T^{10} + 117649 T^{12}$$
$11$ $$1 - 2 T^{2} + 87 T^{4} + 4 T^{6} + 10527 T^{8} - 29282 T^{10} + 1771561 T^{12}$$
$13$ $$( 1 + 11 T^{2} - 16 T^{3} + 143 T^{4} + 2197 T^{6} )^{2}$$
$17$ $$1 - 34 T^{2} + 351 T^{4} - 1084 T^{6} + 101439 T^{8} - 2839714 T^{10} + 24137569 T^{12}$$
$19$ $$1 - 74 T^{2} + 2647 T^{4} - 60620 T^{6} + 955567 T^{8} - 9643754 T^{10} + 47045881 T^{12}$$
$23$ $$1 - 98 T^{2} + 4527 T^{4} - 128636 T^{6} + 2394783 T^{8} - 27424418 T^{10} + 148035889 T^{12}$$
$29$ $$( 1 - 54 T^{2} + 841 T^{4} )^{3}$$
$31$ $$( 1 - 6 T + 77 T^{2} - 308 T^{3} + 2387 T^{4} - 5766 T^{5} + 29791 T^{6} )^{2}$$
$37$ $$( 1 + 4 T + 51 T^{2} + 40 T^{3} + 1887 T^{4} + 5476 T^{5} + 50653 T^{6} )^{2}$$
$41$ $$( 1 - 10 T + 87 T^{2} - 588 T^{3} + 3567 T^{4} - 16810 T^{5} + 68921 T^{6} )^{2}$$
$43$ $$( 1 + 4 T + 65 T^{2} + 216 T^{3} + 2795 T^{4} + 7396 T^{5} + 79507 T^{6} )^{2}$$
$47$ $$1 - 82 T^{2} + 7967 T^{4} - 348252 T^{6} + 17599103 T^{8} - 400133842 T^{10} + 10779215329 T^{12}$$
$53$ $$( 1 - 2 T + 53 T^{2} )^{6}$$
$59$ $$1 - 274 T^{2} + 33911 T^{4} - 2503644 T^{6} + 118044191 T^{8} - 3320156914 T^{10} + 42180533641 T^{12}$$
$61$ $$1 - 110 T^{2} + 10759 T^{4} - 685796 T^{6} + 40034239 T^{8} - 1523042510 T^{10} + 51520374361 T^{12}$$
$67$ $$( 1 - 4 T + 67 T^{2} )^{6}$$
$71$ $$( 1 + 4 T + 101 T^{2} + 632 T^{3} + 7171 T^{4} + 20164 T^{5} + 357911 T^{6} )^{2}$$
$73$ $$( 1 - 16 T + 73 T^{2} )^{3}( 1 + 16 T + 73 T^{2} )^{3}$$
$79$ $$( 1 - 18 T + 317 T^{2} - 2908 T^{3} + 25043 T^{4} - 112338 T^{5} + 493039 T^{6} )^{2}$$
$83$ $$( 1 + 16 T + 265 T^{2} + 2400 T^{3} + 21995 T^{4} + 110224 T^{5} + 571787 T^{6} )^{2}$$
$89$ $$( 1 + 14 T + 263 T^{2} + 2308 T^{3} + 23407 T^{4} + 110894 T^{5} + 704969 T^{6} )^{2}$$
$97$ $$1 - 250 T^{2} + 24143 T^{4} - 1697004 T^{6} + 227161487 T^{8} - 22132320250 T^{10} + 832972004929 T^{12}$$