Properties

Label 7200.2.b.f.4751.7
Level $7200$
Weight $2$
Character 7200.4751
Analytic conductor $57.492$
Analytic rank $0$
Dimension $8$
CM discriminant -40
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(4751,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.4751");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{41}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 4751.7
Root \(0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 7200.4751
Dual form 7200.2.b.f.4751.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.16228i q^{7} +O(q^{10})\) \(q+5.16228i q^{7} -3.05792i q^{11} -0.837722i q^{13} -6.32456 q^{19} +4.47214 q^{23} -11.1623i q^{37} -10.3585i q^{41} -2.82843 q^{47} -19.6491 q^{49} +5.65685 q^{53} -5.42736i q^{59} +15.7858 q^{77} +18.8438i q^{89} +4.32456 q^{91} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 56 q^{49} - 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 5.16228i 1.95116i 0.219650 + 0.975579i \(0.429509\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.05792i − 0.921998i −0.887401 0.460999i \(-0.847491\pi\)
0.887401 0.460999i \(-0.152509\pi\)
\(12\) 0 0
\(13\) − 0.837722i − 0.232342i −0.993229 0.116171i \(-0.962938\pi\)
0.993229 0.116171i \(-0.0370621\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −6.32456 −1.45095 −0.725476 0.688247i \(-0.758380\pi\)
−0.725476 + 0.688247i \(0.758380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.47214 0.932505 0.466252 0.884652i \(-0.345604\pi\)
0.466252 + 0.884652i \(0.345604\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 11.1623i − 1.83507i −0.397658 0.917534i \(-0.630177\pi\)
0.397658 0.917534i \(-0.369823\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 10.3585i − 1.61772i −0.587999 0.808862i \(-0.700084\pi\)
0.587999 0.808862i \(-0.299916\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −19.6491 −2.80702
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.65685 0.777029 0.388514 0.921443i \(-0.372988\pi\)
0.388514 + 0.921443i \(0.372988\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 5.42736i − 0.706582i −0.935513 0.353291i \(-0.885063\pi\)
0.935513 0.353291i \(-0.114937\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.7858 1.79896
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.8438i 1.99744i 0.0506267 + 0.998718i \(0.483878\pi\)
−0.0506267 + 0.998718i \(0.516122\pi\)
\(90\) 0 0
\(91\) 4.32456 0.453337
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) − 17.1623i − 1.69105i −0.533936 0.845525i \(-0.679288\pi\)
0.533936 0.845525i \(-0.320712\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.64911 0.149919
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 13.8114i − 1.22556i −0.790253 0.612781i \(-0.790051\pi\)
0.790253 0.612781i \(-0.209949\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 20.0285i − 1.74990i −0.484216 0.874948i \(-0.660895\pi\)
0.484216 0.874948i \(-0.339105\pi\)
\(132\) 0 0
\(133\) − 32.6491i − 2.83104i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.56169 −0.214219
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.81139i 0.623417i 0.950178 + 0.311708i \(0.100901\pi\)
−0.950178 + 0.311708i \(0.899099\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.0864i 1.81946i
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.47214 −0.346064 −0.173032 0.984916i \(-0.555356\pi\)
−0.173032 + 0.984916i \(0.555356\pi\)
\(168\) 0 0
\(169\) 12.2982 0.946017
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.6274 1.72033 0.860165 0.510015i \(-0.170360\pi\)
0.860165 + 0.510015i \(0.170360\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 13.9126i − 1.03988i −0.854203 0.519940i \(-0.825954\pi\)
0.854203 0.519940i \(-0.174046\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −22.3607 −1.59313 −0.796566 0.604551i \(-0.793352\pi\)
−0.796566 + 0.604551i \(0.793352\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 19.3400i 1.33778i
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.81139i 0.121300i 0.998159 + 0.0606498i \(0.0193173\pi\)
−0.998159 + 0.0606498i \(0.980683\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −25.2982 −1.62960 −0.814801 0.579741i \(-0.803154\pi\)
−0.814801 + 0.579741i \(0.803154\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.29822i 0.337118i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.7749i 1.50066i 0.661065 + 0.750329i \(0.270105\pi\)
−0.661065 + 0.750329i \(0.729895\pi\)
\(252\) 0 0
\(253\) − 13.6754i − 0.859768i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 57.6228 3.58051
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 31.3050 1.93035 0.965173 0.261612i \(-0.0842542\pi\)
0.965173 + 0.261612i \(0.0842542\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 30.1359i − 1.81069i −0.424673 0.905347i \(-0.639611\pi\)
0.424673 0.905347i \(-0.360389\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 33.4449i 1.99516i 0.0695635 + 0.997578i \(0.477839\pi\)
−0.0695635 + 0.997578i \(0.522161\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 53.4734 3.15643
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.47214 −0.261265 −0.130632 0.991431i \(-0.541701\pi\)
−0.130632 + 0.991431i \(0.541701\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 3.74641i − 0.216660i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.3050 1.75826 0.879131 0.476581i \(-0.158124\pi\)
0.879131 + 0.476581i \(0.158124\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 14.6011i − 0.804986i
\(330\) 0 0
\(331\) −31.6228 −1.73814 −0.869072 0.494685i \(-0.835284\pi\)
−0.869072 + 0.494685i \(0.835284\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 65.2982i − 3.52577i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.0000 1.10526
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 37.8114i − 1.97374i −0.161521 0.986869i \(-0.551640\pi\)
0.161521 0.986869i \(-0.448360\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 29.2023i 1.51611i
\(372\) 0 0
\(373\) 6.13594i 0.317707i 0.987302 + 0.158854i \(0.0507798\pi\)
−0.987302 + 0.158854i \(0.949220\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −34.0000 −1.74646 −0.873231 0.487306i \(-0.837980\pi\)
−0.873231 + 0.487306i \(0.837980\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 36.7696 1.87884 0.939418 0.342773i \(-0.111366\pi\)
0.939418 + 0.342773i \(0.111366\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.8377i 1.24657i 0.781995 + 0.623285i \(0.214202\pi\)
−0.781995 + 0.623285i \(0.785798\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 35.8143i − 1.78848i −0.447586 0.894241i \(-0.647716\pi\)
0.447586 0.894241i \(-0.352284\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −34.1334 −1.69193
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 28.0175 1.37865
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 40.7455i − 1.99055i −0.0971178 0.995273i \(-0.530962\pi\)
0.0971178 0.995273i \(-0.469038\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −28.2843 −1.35302
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 41.9302i − 1.97881i −0.145191 0.989404i \(-0.546380\pi\)
0.145191 0.989404i \(-0.453620\pi\)
\(450\) 0 0
\(451\) −31.6754 −1.49154
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) − 10.1886i − 0.473505i −0.971570 0.236752i \(-0.923917\pi\)
0.971570 0.236752i \(-0.0760830\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −9.35089 −0.426364
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0.135944i 0.00616019i 0.999995 + 0.00308010i \(0.000980427\pi\)
−0.999995 + 0.00308010i \(0.999020\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 29.8907i − 1.34895i −0.738298 0.674475i \(-0.764370\pi\)
0.738298 0.674475i \(-0.235630\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −44.2719 −1.98188 −0.990941 0.134298i \(-0.957122\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.7990 0.882793 0.441397 0.897312i \(-0.354483\pi\)
0.441397 + 0.897312i \(0.354483\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.64911i 0.380387i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 8.98151i − 0.393487i −0.980455 0.196744i \(-0.936963\pi\)
0.980455 0.196744i \(-0.0630367\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −3.00000 −0.130435
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.67753 −0.375866
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 60.0855i 2.58806i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.2548 1.91751 0.958754 0.284236i \(-0.0917398\pi\)
0.958754 + 0.284236i \(0.0917398\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 23.5826i − 0.988636i −0.869281 0.494318i \(-0.835418\pi\)
0.869281 0.494318i \(-0.164582\pi\)
\(570\) 0 0
\(571\) 44.2719 1.85272 0.926360 0.376638i \(-0.122920\pi\)
0.926360 + 0.376638i \(0.122920\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 17.2982i − 0.716419i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −25.2982 −1.03194 −0.515968 0.856608i \(-0.672568\pi\)
−0.515968 + 0.856608i \(0.672568\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 32.7851i − 1.33070i −0.746530 0.665352i \(-0.768281\pi\)
0.746530 0.665352i \(-0.231719\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.36944i 0.0958571i
\(612\) 0 0
\(613\) − 38.7851i − 1.56651i −0.621698 0.783257i \(-0.713557\pi\)
0.621698 0.783257i \(-0.286443\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −46.0000 −1.84890 −0.924448 0.381308i \(-0.875474\pi\)
−0.924448 + 0.381308i \(0.875474\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −97.2768 −3.89731
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 16.4605i 0.652189i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 37.1913i − 1.46897i −0.678626 0.734484i \(-0.737424\pi\)
0.678626 0.734484i \(-0.262576\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.1127 1.22317 0.611583 0.791180i \(-0.290533\pi\)
0.611583 + 0.791180i \(0.290533\pi\)
\(648\) 0 0
\(649\) −16.5964 −0.651467
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.47214 −0.175008 −0.0875041 0.996164i \(-0.527889\pi\)
−0.0875041 + 0.996164i \(0.527889\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.9202i 0.503299i 0.967818 + 0.251649i \(0.0809729\pi\)
−0.967818 + 0.251649i \(0.919027\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −49.1935 −1.89066 −0.945330 0.326116i \(-0.894260\pi\)
−0.945330 + 0.326116i \(0.894260\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 4.73887i − 0.180537i
\(690\) 0 0
\(691\) −31.6228 −1.20299 −0.601494 0.798878i \(-0.705427\pi\)
−0.601494 + 0.798878i \(0.705427\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 70.5964i 2.66260i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 88.5964 3.29950
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 41.1623i 1.52662i 0.646030 + 0.763312i \(0.276428\pi\)
−0.646030 + 0.763312i \(0.723572\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 50.7851i − 1.87579i −0.346921 0.937894i \(-0.612773\pi\)
0.346921 0.937894i \(-0.387227\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −6.32456 −0.232653 −0.116326 0.993211i \(-0.537112\pi\)
−0.116326 + 0.993211i \(0.537112\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.7696 1.34894 0.674472 0.738300i \(-0.264371\pi\)
0.674472 + 0.738300i \(0.264371\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 54.1359i − 1.96760i −0.179258 0.983802i \(-0.557370\pi\)
0.179258 0.983802i \(-0.442630\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 20.2207i − 0.733001i −0.930418 0.366501i \(-0.880556\pi\)
0.930418 0.366501i \(-0.119444\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.54662 −0.164169
\(768\) 0 0
\(769\) −12.6491 −0.456139 −0.228069 0.973645i \(-0.573241\pi\)
−0.228069 + 0.973645i \(0.573241\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.3607 0.804258 0.402129 0.915583i \(-0.368270\pi\)
0.402129 + 0.915583i \(0.368270\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 65.5128i 2.34724i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −39.5980 −1.40263 −0.701316 0.712850i \(-0.747404\pi\)
−0.701316 + 0.712850i \(0.747404\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 54.1619i 1.90423i 0.305741 + 0.952115i \(0.401096\pi\)
−0.305741 + 0.952115i \(0.598904\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 11.8641i 0.413555i 0.978388 + 0.206778i \(0.0662976\pi\)
−0.978388 + 0.206778i \(0.933702\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.51317i 0.292516i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 49.9192i − 1.71121i
\(852\) 0 0
\(853\) 37.1096i 1.27061i 0.772262 + 0.635304i \(0.219125\pi\)
−0.772262 + 0.635304i \(0.780875\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 58.1378 1.97903 0.989516 0.144421i \(-0.0461320\pi\)
0.989516 + 0.144421i \(0.0461320\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 49.1096i − 1.65831i −0.559016 0.829157i \(-0.688821\pi\)
0.559016 0.829157i \(-0.311179\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 32.0679i 1.08040i 0.841538 + 0.540198i \(0.181651\pi\)
−0.841538 + 0.540198i \(0.818349\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.47214 −0.150160 −0.0750798 0.997178i \(-0.523921\pi\)
−0.0750798 + 0.997178i \(0.523921\pi\)
\(888\) 0 0
\(889\) 71.2982 2.39127
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.8885 0.598617
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 103.393 3.41432
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.7355i 0.385028i 0.981294 + 0.192514i \(0.0616641\pi\)
−0.981294 + 0.192514i \(0.938336\pi\)
\(930\) 0 0
\(931\) 124.272 4.07285
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) − 46.3246i − 1.50854i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 60.1359i 1.93384i 0.255077 + 0.966921i \(0.417899\pi\)
−0.255077 + 0.966921i \(0.582101\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 39.3685i 1.26339i 0.775215 + 0.631697i \(0.217641\pi\)
−0.775215 + 0.631697i \(0.782359\pi\)
\(972\) 0 0
\(973\) 72.2719i 2.31693i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 57.6228 1.84163
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48.0833 −1.53362 −0.766809 0.641875i \(-0.778157\pi\)
−0.766809 + 0.641875i \(0.778157\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 62.7851i 1.98842i 0.107442 + 0.994211i \(0.465734\pi\)
−0.107442 + 0.994211i \(0.534266\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.b.f.4751.7 8
3.2 odd 2 inner 7200.2.b.f.4751.8 8
4.3 odd 2 1800.2.b.f.251.5 8
5.2 odd 4 1440.2.m.a.719.3 4
5.3 odd 4 1440.2.m.b.719.2 4
5.4 even 2 inner 7200.2.b.f.4751.1 8
8.3 odd 2 inner 7200.2.b.f.4751.1 8
8.5 even 2 1800.2.b.f.251.4 8
12.11 even 2 1800.2.b.f.251.1 8
15.2 even 4 1440.2.m.a.719.1 4
15.8 even 4 1440.2.m.b.719.4 4
15.14 odd 2 inner 7200.2.b.f.4751.2 8
20.3 even 4 360.2.m.a.179.1 4
20.7 even 4 360.2.m.b.179.4 yes 4
20.19 odd 2 1800.2.b.f.251.4 8
24.5 odd 2 1800.2.b.f.251.8 8
24.11 even 2 inner 7200.2.b.f.4751.2 8
40.3 even 4 1440.2.m.a.719.3 4
40.13 odd 4 360.2.m.b.179.4 yes 4
40.19 odd 2 CM 7200.2.b.f.4751.7 8
40.27 even 4 1440.2.m.b.719.2 4
40.29 even 2 1800.2.b.f.251.5 8
40.37 odd 4 360.2.m.a.179.1 4
60.23 odd 4 360.2.m.a.179.4 yes 4
60.47 odd 4 360.2.m.b.179.1 yes 4
60.59 even 2 1800.2.b.f.251.8 8
120.29 odd 2 1800.2.b.f.251.1 8
120.53 even 4 360.2.m.b.179.1 yes 4
120.59 even 2 inner 7200.2.b.f.4751.8 8
120.77 even 4 360.2.m.a.179.4 yes 4
120.83 odd 4 1440.2.m.a.719.1 4
120.107 odd 4 1440.2.m.b.719.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.m.a.179.1 4 20.3 even 4
360.2.m.a.179.1 4 40.37 odd 4
360.2.m.a.179.4 yes 4 60.23 odd 4
360.2.m.a.179.4 yes 4 120.77 even 4
360.2.m.b.179.1 yes 4 60.47 odd 4
360.2.m.b.179.1 yes 4 120.53 even 4
360.2.m.b.179.4 yes 4 20.7 even 4
360.2.m.b.179.4 yes 4 40.13 odd 4
1440.2.m.a.719.1 4 15.2 even 4
1440.2.m.a.719.1 4 120.83 odd 4
1440.2.m.a.719.3 4 5.2 odd 4
1440.2.m.a.719.3 4 40.3 even 4
1440.2.m.b.719.2 4 5.3 odd 4
1440.2.m.b.719.2 4 40.27 even 4
1440.2.m.b.719.4 4 15.8 even 4
1440.2.m.b.719.4 4 120.107 odd 4
1800.2.b.f.251.1 8 12.11 even 2
1800.2.b.f.251.1 8 120.29 odd 2
1800.2.b.f.251.4 8 8.5 even 2
1800.2.b.f.251.4 8 20.19 odd 2
1800.2.b.f.251.5 8 4.3 odd 2
1800.2.b.f.251.5 8 40.29 even 2
1800.2.b.f.251.8 8 24.5 odd 2
1800.2.b.f.251.8 8 60.59 even 2
7200.2.b.f.4751.1 8 5.4 even 2 inner
7200.2.b.f.4751.1 8 8.3 odd 2 inner
7200.2.b.f.4751.2 8 15.14 odd 2 inner
7200.2.b.f.4751.2 8 24.11 even 2 inner
7200.2.b.f.4751.7 8 1.1 even 1 trivial
7200.2.b.f.4751.7 8 40.19 odd 2 CM
7200.2.b.f.4751.8 8 3.2 odd 2 inner
7200.2.b.f.4751.8 8 120.59 even 2 inner