# Properties

 Label 7200.2.a.cr Level $7200$ Weight $2$ Character orbit 7200.a Self dual yes Analytic conductor $57.492$ Analytic rank $0$ Dimension $2$ CM discriminant -20 Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7200 = 2^{5} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7200.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$57.4922894553$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ Defining polynomial: $$x^{2} - x - 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 160) Fricke sign: $$-1$$ Sato-Tate group: $N(\mathrm{U}(1))$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{5}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 3 + \beta ) q^{7} +O(q^{10})$$ $$q + ( 3 + \beta ) q^{7} + ( -1 - 3 \beta ) q^{23} + 6 q^{29} -2 \beta q^{41} + ( 9 - \beta ) q^{43} + ( -7 + 3 \beta ) q^{47} + ( 7 + 6 \beta ) q^{49} + 6 \beta q^{61} + ( 3 + 5 \beta ) q^{67} + ( 11 - 3 \beta ) q^{83} -6 q^{89} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 6 q^{7} + O(q^{10})$$ $$2 q + 6 q^{7} - 2 q^{23} + 12 q^{29} + 18 q^{43} - 14 q^{47} + 14 q^{49} + 6 q^{67} + 22 q^{83} - 12 q^{89} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.618034 1.61803
0 0 0 0 0 0.763932 0 0 0
1.2 0 0 0 0 0 5.23607 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by $$\Q(\sqrt{-5})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7200.2.a.cr 2
3.b odd 2 1 800.2.a.n 2
4.b odd 2 1 7200.2.a.cb 2
5.b even 2 1 7200.2.a.cb 2
5.c odd 4 2 1440.2.f.i 4
12.b even 2 1 800.2.a.j 2
15.d odd 2 1 800.2.a.j 2
15.e even 4 2 160.2.c.b 4
20.d odd 2 1 CM 7200.2.a.cr 2
20.e even 4 2 1440.2.f.i 4
24.f even 2 1 1600.2.a.bd 2
24.h odd 2 1 1600.2.a.z 2
40.i odd 4 2 2880.2.f.w 4
40.k even 4 2 2880.2.f.w 4
60.h even 2 1 800.2.a.n 2
60.l odd 4 2 160.2.c.b 4
120.i odd 2 1 1600.2.a.bd 2
120.m even 2 1 1600.2.a.z 2
120.q odd 4 2 320.2.c.d 4
120.w even 4 2 320.2.c.d 4
240.z odd 4 2 1280.2.f.h 4
240.bb even 4 2 1280.2.f.g 4
240.bd odd 4 2 1280.2.f.g 4
240.bf even 4 2 1280.2.f.h 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.c.b 4 15.e even 4 2
160.2.c.b 4 60.l odd 4 2
320.2.c.d 4 120.q odd 4 2
320.2.c.d 4 120.w even 4 2
800.2.a.j 2 12.b even 2 1
800.2.a.j 2 15.d odd 2 1
800.2.a.n 2 3.b odd 2 1
800.2.a.n 2 60.h even 2 1
1280.2.f.g 4 240.bb even 4 2
1280.2.f.g 4 240.bd odd 4 2
1280.2.f.h 4 240.z odd 4 2
1280.2.f.h 4 240.bf even 4 2
1440.2.f.i 4 5.c odd 4 2
1440.2.f.i 4 20.e even 4 2
1600.2.a.z 2 24.h odd 2 1
1600.2.a.z 2 120.m even 2 1
1600.2.a.bd 2 24.f even 2 1
1600.2.a.bd 2 120.i odd 2 1
2880.2.f.w 4 40.i odd 4 2
2880.2.f.w 4 40.k even 4 2
7200.2.a.cb 2 4.b odd 2 1
7200.2.a.cb 2 5.b even 2 1
7200.2.a.cr 2 1.a even 1 1 trivial
7200.2.a.cr 2 20.d odd 2 1 CM

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7200))$$:

 $$T_{7}^{2} - 6 T_{7} + 4$$ $$T_{11}$$ $$T_{13}$$ $$T_{17}$$ $$T_{19}$$ $$T_{23}^{2} + 2 T_{23} - 44$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$4 - 6 T + T^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2}$$
$17$ $$T^{2}$$
$19$ $$T^{2}$$
$23$ $$-44 + 2 T + T^{2}$$
$29$ $$( -6 + T )^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2}$$
$41$ $$-20 + T^{2}$$
$43$ $$76 - 18 T + T^{2}$$
$47$ $$4 + 14 T + T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$-180 + T^{2}$$
$67$ $$-116 - 6 T + T^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2}$$
$79$ $$T^{2}$$
$83$ $$76 - 22 T + T^{2}$$
$89$ $$( 6 + T )^{2}$$
$97$ $$T^{2}$$