Properties

Label 720.4.w.d.593.5
Level $720$
Weight $4$
Character 720.593
Analytic conductor $42.481$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,4,Mod(17,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} - 14x^{8} - 512x^{6} + 3889x^{4} + 126224x^{2} + 506944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.5
Root \(0.347140 + 2.27426i\) of defining polynomial
Character \(\chi\) \(=\) 720.593
Dual form 720.4.w.d.17.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.38994 + 7.38978i) q^{5} +(10.8652 - 10.8652i) q^{7} +37.8905i q^{11} +(-48.1085 - 48.1085i) q^{13} +(60.3458 + 60.3458i) q^{17} +109.678i q^{19} +(39.7660 - 39.7660i) q^{23} +(15.7823 + 124.000i) q^{25} -90.3553 q^{29} +233.678 q^{31} +(171.449 - 10.8670i) q^{35} +(-19.0042 + 19.0042i) q^{37} +260.783i q^{41} +(-176.216 - 176.216i) q^{43} +(-145.788 - 145.788i) q^{47} +106.896i q^{49} +(183.285 - 183.285i) q^{53} +(-280.002 + 317.899i) q^{55} +279.564 q^{59} -390.267 q^{61} +(-48.1164 - 759.139i) q^{65} +(-150.444 + 150.444i) q^{67} +470.042i q^{71} +(480.765 + 480.765i) q^{73} +(411.687 + 411.687i) q^{77} +1322.44i q^{79} +(456.192 - 456.192i) q^{83} +(60.3558 + 952.240i) q^{85} +1364.85 q^{89} -1045.41 q^{91} +(-810.494 + 920.190i) q^{95} +(-785.308 + 785.308i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{7} - 108 q^{13} - 144 q^{25} + 1248 q^{31} + 828 q^{37} + 96 q^{43} + 1512 q^{55} + 96 q^{61} - 1632 q^{67} + 3972 q^{73} - 1752 q^{85} - 4752 q^{91} + 2772 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.38994 + 7.38978i 0.750419 + 0.660962i
\(6\) 0 0
\(7\) 10.8652 10.8652i 0.586664 0.586664i −0.350062 0.936726i \(-0.613840\pi\)
0.936726 + 0.350062i \(0.113840\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 37.8905i 1.03858i 0.854597 + 0.519291i \(0.173804\pi\)
−0.854597 + 0.519291i \(0.826196\pi\)
\(12\) 0 0
\(13\) −48.1085 48.1085i −1.02638 1.02638i −0.999643 0.0267344i \(-0.991489\pi\)
−0.0267344 0.999643i \(-0.508511\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 60.3458 + 60.3458i 0.860942 + 0.860942i 0.991448 0.130506i \(-0.0416601\pi\)
−0.130506 + 0.991448i \(0.541660\pi\)
\(18\) 0 0
\(19\) 109.678i 1.32430i 0.749369 + 0.662152i \(0.230357\pi\)
−0.749369 + 0.662152i \(0.769643\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 39.7660 39.7660i 0.360512 0.360512i −0.503489 0.864002i \(-0.667951\pi\)
0.864002 + 0.503489i \(0.167951\pi\)
\(24\) 0 0
\(25\) 15.7823 + 124.000i 0.126259 + 0.991997i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −90.3553 −0.578571 −0.289285 0.957243i \(-0.593418\pi\)
−0.289285 + 0.957243i \(0.593418\pi\)
\(30\) 0 0
\(31\) 233.678 1.35386 0.676932 0.736046i \(-0.263309\pi\)
0.676932 + 0.736046i \(0.263309\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 171.449 10.8670i 0.828007 0.0524815i
\(36\) 0 0
\(37\) −19.0042 + 19.0042i −0.0844399 + 0.0844399i −0.748065 0.663625i \(-0.769017\pi\)
0.663625 + 0.748065i \(0.269017\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 260.783i 0.993354i 0.867935 + 0.496677i \(0.165447\pi\)
−0.867935 + 0.496677i \(0.834553\pi\)
\(42\) 0 0
\(43\) −176.216 176.216i −0.624948 0.624948i 0.321845 0.946792i \(-0.395697\pi\)
−0.946792 + 0.321845i \(0.895697\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −145.788 145.788i −0.452456 0.452456i 0.443713 0.896169i \(-0.353661\pi\)
−0.896169 + 0.443713i \(0.853661\pi\)
\(48\) 0 0
\(49\) 106.896i 0.311650i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 183.285 183.285i 0.475022 0.475022i −0.428513 0.903535i \(-0.640962\pi\)
0.903535 + 0.428513i \(0.140962\pi\)
\(54\) 0 0
\(55\) −280.002 + 317.899i −0.686464 + 0.779373i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 279.564 0.616883 0.308441 0.951243i \(-0.400193\pi\)
0.308441 + 0.951243i \(0.400193\pi\)
\(60\) 0 0
\(61\) −390.267 −0.819157 −0.409578 0.912275i \(-0.634324\pi\)
−0.409578 + 0.912275i \(0.634324\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −48.1164 759.139i −0.0918170 1.44861i
\(66\) 0 0
\(67\) −150.444 + 150.444i −0.274324 + 0.274324i −0.830838 0.556514i \(-0.812139\pi\)
0.556514 + 0.830838i \(0.312139\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 470.042i 0.785686i 0.919605 + 0.392843i \(0.128508\pi\)
−0.919605 + 0.392843i \(0.871492\pi\)
\(72\) 0 0
\(73\) 480.765 + 480.765i 0.770812 + 0.770812i 0.978249 0.207436i \(-0.0665119\pi\)
−0.207436 + 0.978249i \(0.566512\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 411.687 + 411.687i 0.609299 + 0.609299i
\(78\) 0 0
\(79\) 1322.44i 1.88337i 0.336497 + 0.941685i \(0.390758\pi\)
−0.336497 + 0.941685i \(0.609242\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 456.192 456.192i 0.603296 0.603296i −0.337890 0.941186i \(-0.609713\pi\)
0.941186 + 0.337890i \(0.109713\pi\)
\(84\) 0 0
\(85\) 60.3558 + 952.240i 0.0770177 + 1.21512i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1364.85 1.62555 0.812774 0.582580i \(-0.197957\pi\)
0.812774 + 0.582580i \(0.197957\pi\)
\(90\) 0 0
\(91\) −1045.41 −1.20428
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −810.494 + 920.190i −0.875315 + 0.993784i
\(96\) 0 0
\(97\) −785.308 + 785.308i −0.822020 + 0.822020i −0.986398 0.164377i \(-0.947439\pi\)
0.164377 + 0.986398i \(0.447439\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 111.555i 0.109902i −0.998489 0.0549510i \(-0.982500\pi\)
0.998489 0.0549510i \(-0.0175003\pi\)
\(102\) 0 0
\(103\) −13.8820 13.8820i −0.0132800 0.0132800i 0.700436 0.713716i \(-0.252989\pi\)
−0.713716 + 0.700436i \(0.752989\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 776.165 + 776.165i 0.701259 + 0.701259i 0.964681 0.263422i \(-0.0848510\pi\)
−0.263422 + 0.964681i \(0.584851\pi\)
\(108\) 0 0
\(109\) 410.579i 0.360792i −0.983594 0.180396i \(-0.942262\pi\)
0.983594 0.180396i \(-0.0577379\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −521.328 + 521.328i −0.434004 + 0.434004i −0.889988 0.455984i \(-0.849287\pi\)
0.455984 + 0.889988i \(0.349287\pi\)
\(114\) 0 0
\(115\) 627.496 39.7725i 0.508820 0.0322505i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1311.34 1.01017
\(120\) 0 0
\(121\) −104.688 −0.0786538
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −783.917 + 1156.98i −0.560926 + 0.827866i
\(126\) 0 0
\(127\) −786.555 + 786.555i −0.549571 + 0.549571i −0.926317 0.376746i \(-0.877043\pi\)
0.376746 + 0.926317i \(0.377043\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 448.364i 0.299036i −0.988759 0.149518i \(-0.952228\pi\)
0.988759 0.149518i \(-0.0477722\pi\)
\(132\) 0 0
\(133\) 1191.67 + 1191.67i 0.776922 + 0.776922i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 950.120 + 950.120i 0.592512 + 0.592512i 0.938309 0.345797i \(-0.112391\pi\)
−0.345797 + 0.938309i \(0.612391\pi\)
\(138\) 0 0
\(139\) 112.735i 0.0687918i 0.999408 + 0.0343959i \(0.0109507\pi\)
−0.999408 + 0.0343959i \(0.989049\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1822.85 1822.85i 1.06598 1.06598i
\(144\) 0 0
\(145\) −758.076 667.706i −0.434171 0.382413i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1492.95 0.820852 0.410426 0.911894i \(-0.365380\pi\)
0.410426 + 0.911894i \(0.365380\pi\)
\(150\) 0 0
\(151\) 2939.54 1.58422 0.792108 0.610381i \(-0.208984\pi\)
0.792108 + 0.610381i \(0.208984\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1960.54 + 1726.83i 1.01597 + 0.894852i
\(156\) 0 0
\(157\) 156.386 156.386i 0.0794967 0.0794967i −0.666240 0.745737i \(-0.732098\pi\)
0.745737 + 0.666240i \(0.232098\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 864.129i 0.422999i
\(162\) 0 0
\(163\) 239.292 + 239.292i 0.114986 + 0.114986i 0.762259 0.647272i \(-0.224090\pi\)
−0.647272 + 0.762259i \(0.724090\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −677.159 677.159i −0.313773 0.313773i 0.532596 0.846369i \(-0.321216\pi\)
−0.846369 + 0.532596i \(0.821216\pi\)
\(168\) 0 0
\(169\) 2431.86i 1.10690i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 441.523 441.523i 0.194037 0.194037i −0.603401 0.797438i \(-0.706188\pi\)
0.797438 + 0.603401i \(0.206188\pi\)
\(174\) 0 0
\(175\) 1518.76 + 1175.80i 0.656041 + 0.507898i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4724.27 −1.97267 −0.986337 0.164737i \(-0.947322\pi\)
−0.986337 + 0.164737i \(0.947322\pi\)
\(180\) 0 0
\(181\) −1548.35 −0.635847 −0.317923 0.948116i \(-0.602985\pi\)
−0.317923 + 0.948116i \(0.602985\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −299.882 + 19.0074i −0.119177 + 0.00755378i
\(186\) 0 0
\(187\) −2286.53 + 2286.53i −0.894159 + 0.894159i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1090.71i 0.413200i −0.978426 0.206600i \(-0.933760\pi\)
0.978426 0.206600i \(-0.0662398\pi\)
\(192\) 0 0
\(193\) −2825.69 2825.69i −1.05387 1.05387i −0.998464 0.0554112i \(-0.982353\pi\)
−0.0554112 0.998464i \(-0.517647\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1163.99 + 1163.99i 0.420969 + 0.420969i 0.885537 0.464569i \(-0.153791\pi\)
−0.464569 + 0.885537i \(0.653791\pi\)
\(198\) 0 0
\(199\) 520.257i 0.185327i −0.995697 0.0926633i \(-0.970462\pi\)
0.995697 0.0926633i \(-0.0295380\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −981.726 + 981.726i −0.339427 + 0.339427i
\(204\) 0 0
\(205\) −1927.13 + 2187.96i −0.656569 + 0.745432i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4155.74 −1.37540
\(210\) 0 0
\(211\) −5524.38 −1.80244 −0.901219 0.433365i \(-0.857326\pi\)
−0.901219 + 0.433365i \(0.857326\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −176.245 2780.65i −0.0559062 0.882039i
\(216\) 0 0
\(217\) 2538.95 2538.95i 0.794263 0.794263i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5806.30i 1.76730i
\(222\) 0 0
\(223\) −323.198 323.198i −0.0970537 0.0970537i 0.656913 0.753967i \(-0.271862\pi\)
−0.753967 + 0.656913i \(0.771862\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2739.76 + 2739.76i 0.801077 + 0.801077i 0.983264 0.182187i \(-0.0583177\pi\)
−0.182187 + 0.983264i \(0.558318\pi\)
\(228\) 0 0
\(229\) 230.334i 0.0664667i −0.999448 0.0332333i \(-0.989420\pi\)
0.999448 0.0332333i \(-0.0105804\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −350.156 + 350.156i −0.0984526 + 0.0984526i −0.754618 0.656165i \(-0.772178\pi\)
0.656165 + 0.754618i \(0.272178\pi\)
\(234\) 0 0
\(235\) −145.812 2300.50i −0.0404755 0.638587i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1013.20 −0.274218 −0.137109 0.990556i \(-0.543781\pi\)
−0.137109 + 0.990556i \(0.543781\pi\)
\(240\) 0 0
\(241\) 2584.30 0.690744 0.345372 0.938466i \(-0.387753\pi\)
0.345372 + 0.938466i \(0.387753\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −789.938 + 896.852i −0.205989 + 0.233868i
\(246\) 0 0
\(247\) 5276.43 5276.43i 1.35924 1.35924i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1708.34i 0.429599i 0.976658 + 0.214800i \(0.0689099\pi\)
−0.976658 + 0.214800i \(0.931090\pi\)
\(252\) 0 0
\(253\) 1506.75 + 1506.75i 0.374422 + 0.374422i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2659.48 + 2659.48i 0.645500 + 0.645500i 0.951902 0.306402i \(-0.0991252\pi\)
−0.306402 + 0.951902i \(0.599125\pi\)
\(258\) 0 0
\(259\) 412.969i 0.0990757i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2307.03 2307.03i 0.540903 0.540903i −0.382891 0.923794i \(-0.625071\pi\)
0.923794 + 0.382891i \(0.125071\pi\)
\(264\) 0 0
\(265\) 2892.19 183.315i 0.670437 0.0424943i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −447.584 −0.101449 −0.0507243 0.998713i \(-0.516153\pi\)
−0.0507243 + 0.998713i \(0.516153\pi\)
\(270\) 0 0
\(271\) −1573.15 −0.352627 −0.176314 0.984334i \(-0.556417\pi\)
−0.176314 + 0.984334i \(0.556417\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4698.41 + 598.000i −1.03027 + 0.131130i
\(276\) 0 0
\(277\) 5816.91 5816.91i 1.26175 1.26175i 0.311504 0.950245i \(-0.399167\pi\)
0.950245 0.311504i \(-0.100833\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 140.032i 0.0297281i 0.999890 + 0.0148640i \(0.00473155\pi\)
−0.999890 + 0.0148640i \(0.995268\pi\)
\(282\) 0 0
\(283\) −4431.85 4431.85i −0.930905 0.930905i 0.0668572 0.997763i \(-0.478703\pi\)
−0.997763 + 0.0668572i \(0.978703\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2833.46 + 2833.46i 0.582765 + 0.582765i
\(288\) 0 0
\(289\) 2370.24i 0.482442i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1244.45 + 1244.45i −0.248127 + 0.248127i −0.820202 0.572074i \(-0.806139\pi\)
0.572074 + 0.820202i \(0.306139\pi\)
\(294\) 0 0
\(295\) 2345.52 + 2065.91i 0.462921 + 0.407736i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3826.17 −0.740043
\(300\) 0 0
\(301\) −3829.24 −0.733269
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3274.32 2883.99i −0.614711 0.541432i
\(306\) 0 0
\(307\) 7327.60 7327.60i 1.36224 1.36224i 0.491189 0.871053i \(-0.336563\pi\)
0.871053 0.491189i \(-0.163437\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7489.38i 1.36554i −0.730632 0.682771i \(-0.760775\pi\)
0.730632 0.682771i \(-0.239225\pi\)
\(312\) 0 0
\(313\) −2456.04 2456.04i −0.443525 0.443525i 0.449670 0.893195i \(-0.351542\pi\)
−0.893195 + 0.449670i \(0.851542\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6724.30 6724.30i −1.19140 1.19140i −0.976674 0.214728i \(-0.931113\pi\)
−0.214728 0.976674i \(-0.568887\pi\)
\(318\) 0 0
\(319\) 3423.60i 0.600894i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6618.59 + 6618.59i −1.14015 + 1.14015i
\(324\) 0 0
\(325\) 5206.18 6724.70i 0.888574 1.14775i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3168.03 −0.530879
\(330\) 0 0
\(331\) 199.080 0.0330586 0.0165293 0.999863i \(-0.494738\pi\)
0.0165293 + 0.999863i \(0.494738\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2373.97 + 150.469i −0.387176 + 0.0245403i
\(336\) 0 0
\(337\) 3308.77 3308.77i 0.534838 0.534838i −0.387170 0.922008i \(-0.626547\pi\)
0.922008 + 0.387170i \(0.126547\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8854.16i 1.40610i
\(342\) 0 0
\(343\) 4888.20 + 4888.20i 0.769498 + 0.769498i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2371.68 2371.68i −0.366912 0.366912i 0.499438 0.866350i \(-0.333540\pi\)
−0.866350 + 0.499438i \(0.833540\pi\)
\(348\) 0 0
\(349\) 8208.92i 1.25906i −0.776975 0.629532i \(-0.783247\pi\)
0.776975 0.629532i \(-0.216753\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6800.98 6800.98i 1.02544 1.02544i 0.0257707 0.999668i \(-0.491796\pi\)
0.999668 0.0257707i \(-0.00820398\pi\)
\(354\) 0 0
\(355\) −3473.51 + 3943.63i −0.519309 + 0.589594i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1778.14 0.261411 0.130705 0.991421i \(-0.458276\pi\)
0.130705 + 0.991421i \(0.458276\pi\)
\(360\) 0 0
\(361\) −5170.20 −0.753783
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 480.844 + 7586.34i 0.0689549 + 1.08791i
\(366\) 0 0
\(367\) 4673.56 4673.56i 0.664735 0.664735i −0.291757 0.956492i \(-0.594240\pi\)
0.956492 + 0.291757i \(0.0942400\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3982.85i 0.557357i
\(372\) 0 0
\(373\) −5729.37 5729.37i −0.795323 0.795323i 0.187031 0.982354i \(-0.440114\pi\)
−0.982354 + 0.187031i \(0.940114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4346.86 + 4346.86i 0.593832 + 0.593832i
\(378\) 0 0
\(379\) 153.883i 0.0208561i 0.999946 + 0.0104280i \(0.00331941\pi\)
−0.999946 + 0.0104280i \(0.996681\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4297.76 4297.76i 0.573382 0.573382i −0.359690 0.933072i \(-0.617118\pi\)
0.933072 + 0.359690i \(0.117118\pi\)
\(384\) 0 0
\(385\) 411.754 + 6496.30i 0.0545063 + 0.859954i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7833.00 −1.02095 −0.510474 0.859893i \(-0.670530\pi\)
−0.510474 + 0.859893i \(0.670530\pi\)
\(390\) 0 0
\(391\) 4799.42 0.620760
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9772.54 + 11095.2i −1.24484 + 1.41332i
\(396\) 0 0
\(397\) −10195.4 + 10195.4i −1.28889 + 1.28889i −0.353435 + 0.935459i \(0.614987\pi\)
−0.935459 + 0.353435i \(0.885013\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10778.3i 1.34226i −0.741341 0.671128i \(-0.765810\pi\)
0.741341 0.671128i \(-0.234190\pi\)
\(402\) 0 0
\(403\) −11241.9 11241.9i −1.38957 1.38957i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −720.079 720.079i −0.0876978 0.0876978i
\(408\) 0 0
\(409\) 4629.92i 0.559743i −0.960037 0.279872i \(-0.909708\pi\)
0.960037 0.279872i \(-0.0902919\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3037.51 3037.51i 0.361903 0.361903i
\(414\) 0 0
\(415\) 7198.58 456.267i 0.851480 0.0539693i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11276.5 1.31478 0.657389 0.753551i \(-0.271661\pi\)
0.657389 + 0.753551i \(0.271661\pi\)
\(420\) 0 0
\(421\) 3387.58 0.392163 0.196082 0.980588i \(-0.437178\pi\)
0.196082 + 0.980588i \(0.437178\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6530.47 + 8435.26i −0.745351 + 0.962753i
\(426\) 0 0
\(427\) −4240.32 + 4240.32i −0.480570 + 0.480570i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16161.7i 1.80623i −0.429402 0.903113i \(-0.641276\pi\)
0.429402 0.903113i \(-0.358724\pi\)
\(432\) 0 0
\(433\) −3808.79 3808.79i −0.422722 0.422722i 0.463418 0.886140i \(-0.346623\pi\)
−0.886140 + 0.463418i \(0.846623\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4361.44 + 4361.44i 0.477428 + 0.477428i
\(438\) 0 0
\(439\) 1607.30i 0.174744i 0.996176 + 0.0873718i \(0.0278468\pi\)
−0.996176 + 0.0873718i \(0.972153\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8296.60 8296.60i 0.889805 0.889805i −0.104699 0.994504i \(-0.533388\pi\)
0.994504 + 0.104699i \(0.0333880\pi\)
\(444\) 0 0
\(445\) 11451.0 + 10085.9i 1.21984 + 1.07442i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −15061.8 −1.58309 −0.791547 0.611108i \(-0.790724\pi\)
−0.791547 + 0.611108i \(0.790724\pi\)
\(450\) 0 0
\(451\) −9881.20 −1.03168
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8770.97 7725.38i −0.903713 0.795981i
\(456\) 0 0
\(457\) 2671.27 2671.27i 0.273428 0.273428i −0.557050 0.830479i \(-0.688067\pi\)
0.830479 + 0.557050i \(0.188067\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12809.1i 1.29410i −0.762449 0.647049i \(-0.776003\pi\)
0.762449 0.647049i \(-0.223997\pi\)
\(462\) 0 0
\(463\) 11154.1 + 11154.1i 1.11960 + 1.11960i 0.991799 + 0.127804i \(0.0407927\pi\)
0.127804 + 0.991799i \(0.459207\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7905.44 + 7905.44i 0.783341 + 0.783341i 0.980393 0.197052i \(-0.0631368\pi\)
−0.197052 + 0.980393i \(0.563137\pi\)
\(468\) 0 0
\(469\) 3269.21i 0.321872i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6676.92 6676.92i 0.649060 0.649060i
\(474\) 0 0
\(475\) −13600.0 + 1730.97i −1.31371 + 0.167205i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10715.8 −1.02217 −0.511085 0.859530i \(-0.670756\pi\)
−0.511085 + 0.859530i \(0.670756\pi\)
\(480\) 0 0
\(481\) 1828.53 0.173334
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12391.9 + 785.437i −1.16018 + 0.0735358i
\(486\) 0 0
\(487\) 4489.84 4489.84i 0.417770 0.417770i −0.466664 0.884435i \(-0.654544\pi\)
0.884435 + 0.466664i \(0.154544\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15174.1i 1.39470i 0.716729 + 0.697352i \(0.245638\pi\)
−0.716729 + 0.697352i \(0.754362\pi\)
\(492\) 0 0
\(493\) −5452.56 5452.56i −0.498116 0.498116i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5107.09 + 5107.09i 0.460934 + 0.460934i
\(498\) 0 0
\(499\) 8887.20i 0.797286i −0.917106 0.398643i \(-0.869481\pi\)
0.917106 0.398643i \(-0.130519\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12740.5 + 12740.5i −1.12936 + 1.12936i −0.139084 + 0.990281i \(0.544416\pi\)
−0.990281 + 0.139084i \(0.955584\pi\)
\(504\) 0 0
\(505\) 824.364 935.937i 0.0726410 0.0824726i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9257.00 0.806108 0.403054 0.915176i \(-0.367949\pi\)
0.403054 + 0.915176i \(0.367949\pi\)
\(510\) 0 0
\(511\) 10447.2 0.904416
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.8843 219.055i −0.00118799 0.0187431i
\(516\) 0 0
\(517\) 5523.99 5523.99i 0.469913 0.469913i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13563.3i 1.14054i 0.821458 + 0.570268i \(0.193161\pi\)
−0.821458 + 0.570268i \(0.806839\pi\)
\(522\) 0 0
\(523\) −11193.8 11193.8i −0.935894 0.935894i 0.0621714 0.998065i \(-0.480197\pi\)
−0.998065 + 0.0621714i \(0.980197\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14101.5 + 14101.5i 1.16560 + 1.16560i
\(528\) 0 0
\(529\) 9004.33i 0.740062i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12545.9 12545.9i 1.01956 1.01956i
\(534\) 0 0
\(535\) 776.293 + 12247.7i 0.0627329 + 0.989744i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4050.34 −0.323675
\(540\) 0 0
\(541\) 1383.33 0.109934 0.0549668 0.998488i \(-0.482495\pi\)
0.0549668 + 0.998488i \(0.482495\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3034.09 3444.73i 0.238470 0.270745i
\(546\) 0 0
\(547\) −2181.76 + 2181.76i −0.170540 + 0.170540i −0.787217 0.616677i \(-0.788479\pi\)
0.616677 + 0.787217i \(0.288479\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9909.96i 0.766204i
\(552\) 0 0
\(553\) 14368.5 + 14368.5i 1.10491 + 1.10491i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15674.9 + 15674.9i 1.19240 + 1.19240i 0.976392 + 0.216007i \(0.0693035\pi\)
0.216007 + 0.976392i \(0.430697\pi\)
\(558\) 0 0
\(559\) 16955.0i 1.28286i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8213.60 8213.60i 0.614852 0.614852i −0.329354 0.944206i \(-0.606831\pi\)
0.944206 + 0.329354i \(0.106831\pi\)
\(564\) 0 0
\(565\) −8226.41 + 521.414i −0.612545 + 0.0388248i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16902.1 1.24530 0.622648 0.782502i \(-0.286057\pi\)
0.622648 + 0.782502i \(0.286057\pi\)
\(570\) 0 0
\(571\) −6507.12 −0.476908 −0.238454 0.971154i \(-0.576641\pi\)
−0.238454 + 0.971154i \(0.576641\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5558.57 + 4303.37i 0.403145 + 0.312109i
\(576\) 0 0
\(577\) 7884.54 7884.54i 0.568870 0.568870i −0.362942 0.931812i \(-0.618228\pi\)
0.931812 + 0.362942i \(0.118228\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9913.20i 0.707864i
\(582\) 0 0
\(583\) 6944.77 + 6944.77i 0.493350 + 0.493350i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9548.44 + 9548.44i 0.671390 + 0.671390i 0.958037 0.286646i \(-0.0925404\pi\)
−0.286646 + 0.958037i \(0.592540\pi\)
\(588\) 0 0
\(589\) 25629.2i 1.79293i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3491.97 + 3491.97i −0.241818 + 0.241818i −0.817602 0.575784i \(-0.804697\pi\)
0.575784 + 0.817602i \(0.304697\pi\)
\(594\) 0 0
\(595\) 11002.0 + 9690.48i 0.758049 + 0.667682i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11203.0 0.764175 0.382087 0.924126i \(-0.375205\pi\)
0.382087 + 0.924126i \(0.375205\pi\)
\(600\) 0 0
\(601\) −13953.5 −0.947048 −0.473524 0.880781i \(-0.657018\pi\)
−0.473524 + 0.880781i \(0.657018\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −878.328 773.622i −0.0590233 0.0519871i
\(606\) 0 0
\(607\) 1292.54 1292.54i 0.0864293 0.0864293i −0.662570 0.749000i \(-0.730534\pi\)
0.749000 + 0.662570i \(0.230534\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14027.3i 0.928780i
\(612\) 0 0
\(613\) 225.964 + 225.964i 0.0148884 + 0.0148884i 0.714512 0.699623i \(-0.246649\pi\)
−0.699623 + 0.714512i \(0.746649\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2717.41 2717.41i −0.177308 0.177308i 0.612873 0.790181i \(-0.290014\pi\)
−0.790181 + 0.612873i \(0.790014\pi\)
\(618\) 0 0
\(619\) 8870.55i 0.575989i 0.957632 + 0.287995i \(0.0929886\pi\)
−0.957632 + 0.287995i \(0.907011\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14829.3 14829.3i 0.953650 0.953650i
\(624\) 0 0
\(625\) −15126.8 + 3914.00i −0.968118 + 0.250496i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2293.65 −0.145396
\(630\) 0 0
\(631\) −29762.7 −1.87771 −0.938853 0.344318i \(-0.888110\pi\)
−0.938853 + 0.344318i \(0.888110\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12411.6 + 786.685i −0.775654 + 0.0491632i
\(636\) 0 0
\(637\) 5142.61 5142.61i 0.319871 0.319871i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5168.75i 0.318492i 0.987239 + 0.159246i \(0.0509063\pi\)
−0.987239 + 0.159246i \(0.949094\pi\)
\(642\) 0 0
\(643\) 2078.46 + 2078.46i 0.127475 + 0.127475i 0.767966 0.640491i \(-0.221269\pi\)
−0.640491 + 0.767966i \(0.721269\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10765.7 + 10765.7i 0.654164 + 0.654164i 0.953993 0.299829i \(-0.0969297\pi\)
−0.299829 + 0.953993i \(0.596930\pi\)
\(648\) 0 0
\(649\) 10592.8i 0.640684i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12815.1 + 12815.1i −0.767984 + 0.767984i −0.977751 0.209767i \(-0.932729\pi\)
0.209767 + 0.977751i \(0.432729\pi\)
\(654\) 0 0
\(655\) 3313.31 3761.75i 0.197651 0.224402i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16634.8 −0.983307 −0.491654 0.870791i \(-0.663607\pi\)
−0.491654 + 0.870791i \(0.663607\pi\)
\(660\) 0 0
\(661\) −10835.6 −0.637601 −0.318800 0.947822i \(-0.603280\pi\)
−0.318800 + 0.947822i \(0.603280\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1191.86 + 18804.2i 0.0695015 + 1.09653i
\(666\) 0 0
\(667\) −3593.07 + 3593.07i −0.208582 + 0.208582i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14787.4i 0.850762i
\(672\) 0 0
\(673\) −16220.3 16220.3i −0.929045 0.929045i 0.0685992 0.997644i \(-0.478147\pi\)
−0.997644 + 0.0685992i \(0.978147\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11196.6 + 11196.6i 0.635626 + 0.635626i 0.949473 0.313847i \(-0.101618\pi\)
−0.313847 + 0.949473i \(0.601618\pi\)
\(678\) 0 0
\(679\) 17065.0i 0.964500i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15428.1 15428.1i 0.864331 0.864331i −0.127507 0.991838i \(-0.540697\pi\)
0.991838 + 0.127507i \(0.0406975\pi\)
\(684\) 0 0
\(685\) 950.276 + 14992.6i 0.0530046 + 0.836261i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17635.2 −0.975104
\(690\) 0 0
\(691\) −21858.6 −1.20339 −0.601693 0.798728i \(-0.705507\pi\)
−0.601693 + 0.798728i \(0.705507\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −833.087 + 945.841i −0.0454688 + 0.0516227i
\(696\) 0 0
\(697\) −15737.2 + 15737.2i −0.855220 + 0.855220i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8846.82i 0.476662i −0.971184 0.238331i \(-0.923400\pi\)
0.971184 0.238331i \(-0.0766002\pi\)
\(702\) 0 0
\(703\) −2084.34 2084.34i −0.111824 0.111824i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1212.06 1212.06i −0.0644755 0.0644755i
\(708\) 0 0
\(709\) 23189.8i 1.22837i 0.789163 + 0.614184i \(0.210515\pi\)
−0.789163 + 0.614184i \(0.789485\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9292.43 9292.43i 0.488084 0.488084i
\(714\) 0 0
\(715\) 28764.1 1823.15i 1.50450 0.0953596i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7005.29 −0.363356 −0.181678 0.983358i \(-0.558153\pi\)
−0.181678 + 0.983358i \(0.558153\pi\)
\(720\) 0 0
\(721\) −301.661 −0.0155818
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1426.02 11204.0i −0.0730495 0.573941i
\(726\) 0 0
\(727\) 16025.7 16025.7i 0.817553 0.817553i −0.168200 0.985753i \(-0.553795\pi\)
0.985753 + 0.168200i \(0.0537954\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21267.8i 1.07609i
\(732\) 0 0
\(733\) −3319.43 3319.43i −0.167266 0.167266i 0.618511 0.785777i \(-0.287736\pi\)
−0.785777 + 0.618511i \(0.787736\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5700.41 5700.41i −0.284908 0.284908i
\(738\) 0 0
\(739\) 19979.4i 0.994526i 0.867600 + 0.497263i \(0.165662\pi\)
−0.867600 + 0.497263i \(0.834338\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14574.6 14574.6i 0.719637 0.719637i −0.248894 0.968531i \(-0.580067\pi\)
0.968531 + 0.248894i \(0.0800670\pi\)
\(744\) 0 0
\(745\) 12525.7 + 11032.5i 0.615983 + 0.542552i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16866.3 0.822807
\(750\) 0 0
\(751\) 11620.1 0.564612 0.282306 0.959324i \(-0.408901\pi\)
0.282306 + 0.959324i \(0.408901\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 24662.6 + 21722.6i 1.18883 + 1.04711i
\(756\) 0 0
\(757\) 10502.0 10502.0i 0.504229 0.504229i −0.408520 0.912749i \(-0.633955\pi\)
0.912749 + 0.408520i \(0.133955\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36489.6i 1.73817i −0.494664 0.869085i \(-0.664709\pi\)
0.494664 0.869085i \(-0.335291\pi\)
\(762\) 0 0
\(763\) −4461.01 4461.01i −0.211664 0.211664i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13449.4 13449.4i −0.633154 0.633154i
\(768\) 0 0
\(769\) 30323.9i 1.42199i −0.703198 0.710994i \(-0.748245\pi\)
0.703198 0.710994i \(-0.251755\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10327.2 + 10327.2i −0.480522 + 0.480522i −0.905298 0.424777i \(-0.860353\pi\)
0.424777 + 0.905298i \(0.360353\pi\)
\(774\) 0 0
\(775\) 3687.98 + 28976.0i 0.170937 + 1.34303i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −28602.1 −1.31550
\(780\) 0 0
\(781\) −17810.1 −0.816000
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2467.73 156.412i 0.112200 0.00711157i
\(786\) 0 0
\(787\) −21521.8 + 21521.8i −0.974802 + 0.974802i −0.999690 0.0248882i \(-0.992077\pi\)
0.0248882 + 0.999690i \(0.492077\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11328.6i 0.509229i
\(792\) 0 0
\(793\) 18775.2 + 18775.2i 0.840764 + 0.840764i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17277.8 + 17277.8i 0.767895 + 0.767895i 0.977736 0.209841i \(-0.0672945\pi\)
−0.209841 + 0.977736i \(0.567294\pi\)
\(798\) 0 0
\(799\) 17595.4i 0.779076i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18216.4 + 18216.4i −0.800552 + 0.800552i
\(804\) 0 0
\(805\) 6385.72 7249.99i 0.279586 0.317427i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 41260.2 1.79312 0.896558 0.442926i \(-0.146059\pi\)
0.896558 + 0.442926i \(0.146059\pi\)
\(810\) 0 0
\(811\) 23357.1 1.01132 0.505659 0.862733i \(-0.331249\pi\)
0.505659 + 0.862733i \(0.331249\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 239.331 + 3775.96i 0.0102864 + 0.162290i
\(816\) 0 0
\(817\) 19327.0 19327.0i 0.827621 0.827621i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8296.46i 0.352678i −0.984330 0.176339i \(-0.943575\pi\)
0.984330 0.176339i \(-0.0564254\pi\)
\(822\) 0 0
\(823\) −17980.5 17980.5i −0.761555 0.761555i 0.215048 0.976603i \(-0.431009\pi\)
−0.976603 + 0.215048i \(0.931009\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9128.21 + 9128.21i 0.383820 + 0.383820i 0.872476 0.488656i \(-0.162513\pi\)
−0.488656 + 0.872476i \(0.662513\pi\)
\(828\) 0 0
\(829\) 24401.3i 1.02231i −0.859489 0.511154i \(-0.829218\pi\)
0.859489 0.511154i \(-0.170782\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6450.73 + 6450.73i −0.268313 + 0.268313i
\(834\) 0 0
\(835\) −677.271 10685.4i −0.0280694 0.442854i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 38174.8 1.57084 0.785422 0.618960i \(-0.212446\pi\)
0.785422 + 0.618960i \(0.212446\pi\)
\(840\) 0 0
\(841\) −16224.9 −0.665256
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17970.9 + 20403.1i −0.731618 + 0.830639i
\(846\) 0 0
\(847\) −1137.45 + 1137.45i −0.0461433 + 0.0461433i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1511.44i 0.0608833i
\(852\) 0 0
\(853\) 1757.73 + 1757.73i 0.0705550 + 0.0705550i 0.741504 0.670949i \(-0.234113\pi\)
−0.670949 + 0.741504i \(0.734113\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7091.77 + 7091.77i 0.282672 + 0.282672i 0.834174 0.551501i \(-0.185945\pi\)
−0.551501 + 0.834174i \(0.685945\pi\)
\(858\) 0 0
\(859\) 16842.4i 0.668982i −0.942399 0.334491i \(-0.891436\pi\)
0.942399 0.334491i \(-0.108564\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −33056.1 + 33056.1i −1.30387 + 1.30387i −0.378114 + 0.925759i \(0.623427\pi\)
−0.925759 + 0.378114i \(0.876573\pi\)
\(864\) 0 0
\(865\) 6967.12 441.596i 0.273860 0.0173581i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −50107.9 −1.95603
\(870\) 0 0
\(871\) 14475.3 0.563120
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4053.37 + 21088.2i 0.156604 + 0.814754i
\(876\) 0 0
\(877\) 1780.97 1780.97i 0.0685738 0.0685738i −0.671988 0.740562i \(-0.734559\pi\)
0.740562 + 0.671988i \(0.234559\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2698.82i 0.103207i 0.998668 + 0.0516036i \(0.0164332\pi\)
−0.998668 + 0.0516036i \(0.983567\pi\)
\(882\) 0 0
\(883\) −6744.66 6744.66i −0.257051 0.257051i 0.566803 0.823854i \(-0.308180\pi\)
−0.823854 + 0.566803i \(0.808180\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1302.99 + 1302.99i 0.0493238 + 0.0493238i 0.731338 0.682015i \(-0.238896\pi\)
−0.682015 + 0.731338i \(0.738896\pi\)
\(888\) 0 0
\(889\) 17092.1i 0.644827i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15989.7 15989.7i 0.599189 0.599189i
\(894\) 0 0
\(895\) −39636.4 34911.3i −1.48033 1.30386i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −21114.0 −0.783306
\(900\) 0 0
\(901\) 22121.0 0.817933
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12990.6 11442.0i −0.477152 0.420271i
\(906\) 0 0
\(907\) 3070.33 3070.33i 0.112402 0.112402i −0.648669 0.761071i \(-0.724674\pi\)
0.761071 + 0.648669i \(0.224674\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19102.6i 0.694727i −0.937731 0.347364i \(-0.887077\pi\)
0.937731 0.347364i \(-0.112923\pi\)
\(912\) 0 0
\(913\) 17285.3 + 17285.3i 0.626572 + 0.626572i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4871.55 4871.55i −0.175434 0.175434i
\(918\) 0 0
\(919\) 29786.7i 1.06917i −0.845113 0.534587i \(-0.820467\pi\)
0.845113 0.534587i \(-0.179533\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 22613.0 22613.0i 0.806410 0.806410i
\(924\) 0 0
\(925\) −2656.45 2056.59i −0.0944254 0.0731029i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7724.87 −0.272815 −0.136407 0.990653i \(-0.543556\pi\)
−0.136407 + 0.990653i \(0.543556\pi\)
\(930\) 0 0
\(931\) −11724.1 −0.412720
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −36080.8 + 2286.91i −1.26200 + 0.0799892i
\(936\) 0 0
\(937\) −20722.5 + 20722.5i −0.722492 + 0.722492i −0.969112 0.246620i \(-0.920680\pi\)
0.246620 + 0.969112i \(0.420680\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21780.7i 0.754548i 0.926102 + 0.377274i \(0.123138\pi\)
−0.926102 + 0.377274i \(0.876862\pi\)
\(942\) 0 0
\(943\) 10370.3 + 10370.3i 0.358116 + 0.358116i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −29938.4 29938.4i −1.02731 1.02731i −0.999616 0.0276975i \(-0.991182\pi\)
−0.0276975 0.999616i \(-0.508818\pi\)
\(948\) 0 0
\(949\) 46257.8i 1.58229i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −29572.1 + 29572.1i −1.00518 + 1.00518i −0.00519163 + 0.999987i \(0.501653\pi\)
−0.999987 + 0.00519163i \(0.998347\pi\)
\(954\) 0 0
\(955\) 8060.12 9151.01i 0.273109 0.310073i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20646.4 0.695212
\(960\) 0 0
\(961\) 24814.3 0.832945
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2826.16 44588.7i −0.0942769 1.48742i
\(966\) 0 0
\(967\) 9478.37 9478.37i 0.315206 0.315206i −0.531717 0.846922i \(-0.678453\pi\)
0.846922 + 0.531717i \(0.178453\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8382.79i 0.277051i 0.990359 + 0.138525i \(0.0442363\pi\)
−0.990359 + 0.138525i \(0.955764\pi\)
\(972\) 0 0
\(973\) 1224.89 + 1224.89i 0.0403577 + 0.0403577i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24277.3 + 24277.3i 0.794986 + 0.794986i 0.982300 0.187314i \(-0.0599783\pi\)
−0.187314 + 0.982300i \(0.559978\pi\)
\(978\) 0 0
\(979\) 51714.8i 1.68826i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 14666.4 14666.4i 0.475876 0.475876i −0.427934 0.903810i \(-0.640758\pi\)
0.903810 + 0.427934i \(0.140758\pi\)
\(984\) 0 0
\(985\) 1164.18 + 18367.4i 0.0376588 + 0.594147i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −14014.8 −0.450603
\(990\) 0 0
\(991\) −17192.0 −0.551080 −0.275540 0.961290i \(-0.588857\pi\)
−0.275540 + 0.961290i \(0.588857\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3844.58 4364.92i 0.122494 0.139073i
\(996\) 0 0
\(997\) 13617.4 13617.4i 0.432566 0.432566i −0.456935 0.889500i \(-0.651053\pi\)
0.889500 + 0.456935i \(0.151053\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.w.d.593.5 12
3.2 odd 2 inner 720.4.w.d.593.2 12
4.3 odd 2 45.4.f.a.8.5 yes 12
5.2 odd 4 inner 720.4.w.d.17.2 12
12.11 even 2 45.4.f.a.8.2 12
15.2 even 4 inner 720.4.w.d.17.5 12
20.3 even 4 225.4.f.c.107.5 12
20.7 even 4 45.4.f.a.17.2 yes 12
20.19 odd 2 225.4.f.c.143.2 12
60.23 odd 4 225.4.f.c.107.2 12
60.47 odd 4 45.4.f.a.17.5 yes 12
60.59 even 2 225.4.f.c.143.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.f.a.8.2 12 12.11 even 2
45.4.f.a.8.5 yes 12 4.3 odd 2
45.4.f.a.17.2 yes 12 20.7 even 4
45.4.f.a.17.5 yes 12 60.47 odd 4
225.4.f.c.107.2 12 60.23 odd 4
225.4.f.c.107.5 12 20.3 even 4
225.4.f.c.143.2 12 20.19 odd 2
225.4.f.c.143.5 12 60.59 even 2
720.4.w.d.17.2 12 5.2 odd 4 inner
720.4.w.d.17.5 12 15.2 even 4 inner
720.4.w.d.593.2 12 3.2 odd 2 inner
720.4.w.d.593.5 12 1.1 even 1 trivial