Properties

Label 720.4.f.m.289.4
Level $720$
Weight $4$
Character 720.289
Analytic conductor $42.481$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,4,Mod(289,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.4
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 720.289
Dual form 720.4.f.m.289.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(10.7980 + 2.89898i) q^{5} +12.6969i q^{7} +59.1918 q^{11} -42.2020i q^{13} -126.384i q^{17} -19.1918 q^{19} -78.3133i q^{23} +(108.192 + 62.6061i) q^{25} -148.384 q^{29} +139.151 q^{31} +(-36.8082 + 137.101i) q^{35} -66.5653i q^{37} +203.212 q^{41} +288.879i q^{43} +360.434i q^{47} +181.788 q^{49} -686.888i q^{53} +(639.151 + 171.596i) q^{55} +83.1102 q^{59} -208.829 q^{61} +(122.343 - 455.696i) q^{65} -192.293i q^{67} +500.767 q^{71} -122.706i q^{73} +751.555i q^{77} -289.616 q^{79} +573.950i q^{83} +(366.384 - 1364.69i) q^{85} -565.151 q^{89} +535.837 q^{91} +(-207.233 - 55.6367i) q^{95} +643.959i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 80 q^{11} + 80 q^{19} + 276 q^{25} - 280 q^{29} - 384 q^{31} - 304 q^{35} + 1048 q^{41} + 492 q^{49} + 1616 q^{55} - 1392 q^{59} - 1384 q^{61} - 608 q^{65} + 1376 q^{71} - 1472 q^{79} + 1152 q^{85}+ \cdots - 1456 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 10.7980 + 2.89898i 0.965799 + 0.259293i
\(6\) 0 0
\(7\) 12.6969i 0.685570i 0.939414 + 0.342785i \(0.111370\pi\)
−0.939414 + 0.342785i \(0.888630\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 59.1918 1.62246 0.811228 0.584730i \(-0.198800\pi\)
0.811228 + 0.584730i \(0.198800\pi\)
\(12\) 0 0
\(13\) 42.2020i 0.900365i −0.892937 0.450182i \(-0.851359\pi\)
0.892937 0.450182i \(-0.148641\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 126.384i 1.80309i −0.432685 0.901545i \(-0.642434\pi\)
0.432685 0.901545i \(-0.357566\pi\)
\(18\) 0 0
\(19\) −19.1918 −0.231732 −0.115866 0.993265i \(-0.536964\pi\)
−0.115866 + 0.993265i \(0.536964\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 78.3133i 0.709976i −0.934871 0.354988i \(-0.884485\pi\)
0.934871 0.354988i \(-0.115515\pi\)
\(24\) 0 0
\(25\) 108.192 + 62.6061i 0.865535 + 0.500849i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −148.384 −0.950143 −0.475072 0.879947i \(-0.657578\pi\)
−0.475072 + 0.879947i \(0.657578\pi\)
\(30\) 0 0
\(31\) 139.151 0.806202 0.403101 0.915156i \(-0.367932\pi\)
0.403101 + 0.915156i \(0.367932\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −36.8082 + 137.101i −0.177763 + 0.662123i
\(36\) 0 0
\(37\) 66.5653i 0.295764i −0.989005 0.147882i \(-0.952754\pi\)
0.989005 0.147882i \(-0.0472456\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 203.212 0.774059 0.387030 0.922067i \(-0.373501\pi\)
0.387030 + 0.922067i \(0.373501\pi\)
\(42\) 0 0
\(43\) 288.879i 1.02450i 0.858836 + 0.512251i \(0.171188\pi\)
−0.858836 + 0.512251i \(0.828812\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 360.434i 1.11861i 0.828962 + 0.559305i \(0.188932\pi\)
−0.828962 + 0.559305i \(0.811068\pi\)
\(48\) 0 0
\(49\) 181.788 0.529993
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 686.888i 1.78021i −0.455753 0.890106i \(-0.650630\pi\)
0.455753 0.890106i \(-0.349370\pi\)
\(54\) 0 0
\(55\) 639.151 + 171.596i 1.56697 + 0.420691i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 83.1102 0.183390 0.0916951 0.995787i \(-0.470771\pi\)
0.0916951 + 0.995787i \(0.470771\pi\)
\(60\) 0 0
\(61\) −208.829 −0.438324 −0.219162 0.975688i \(-0.570332\pi\)
−0.219162 + 0.975688i \(0.570332\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 122.343 455.696i 0.233458 0.869571i
\(66\) 0 0
\(67\) 192.293i 0.350632i −0.984512 0.175316i \(-0.943905\pi\)
0.984512 0.175316i \(-0.0560946\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 500.767 0.837044 0.418522 0.908207i \(-0.362548\pi\)
0.418522 + 0.908207i \(0.362548\pi\)
\(72\) 0 0
\(73\) 122.706i 0.196735i −0.995150 0.0983676i \(-0.968638\pi\)
0.995150 0.0983676i \(-0.0313621\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 751.555i 1.11231i
\(78\) 0 0
\(79\) −289.616 −0.412461 −0.206230 0.978503i \(-0.566120\pi\)
−0.206230 + 0.978503i \(0.566120\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 573.950i 0.759026i 0.925186 + 0.379513i \(0.123909\pi\)
−0.925186 + 0.379513i \(0.876091\pi\)
\(84\) 0 0
\(85\) 366.384 1364.69i 0.467528 1.74142i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −565.151 −0.673100 −0.336550 0.941666i \(-0.609260\pi\)
−0.336550 + 0.941666i \(0.609260\pi\)
\(90\) 0 0
\(91\) 535.837 0.617263
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −207.233 55.6367i −0.223807 0.0600864i
\(96\) 0 0
\(97\) 643.959i 0.674063i 0.941493 + 0.337032i \(0.109423\pi\)
−0.941493 + 0.337032i \(0.890577\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 745.918 0.734868 0.367434 0.930050i \(-0.380236\pi\)
0.367434 + 0.930050i \(0.380236\pi\)
\(102\) 0 0
\(103\) 738.413i 0.706389i −0.935550 0.353194i \(-0.885095\pi\)
0.935550 0.353194i \(-0.114905\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 558.536i 0.504633i −0.967645 0.252316i \(-0.918808\pi\)
0.967645 0.252316i \(-0.0811923\pi\)
\(108\) 0 0
\(109\) 1523.69 1.33893 0.669465 0.742843i \(-0.266523\pi\)
0.669465 + 0.742843i \(0.266523\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 58.4245i 0.0486382i −0.999704 0.0243191i \(-0.992258\pi\)
0.999704 0.0243191i \(-0.00774177\pi\)
\(114\) 0 0
\(115\) 227.029 845.623i 0.184091 0.685694i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1604.69 1.23615
\(120\) 0 0
\(121\) 2172.67 1.63236
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 986.757 + 989.664i 0.706066 + 0.708146i
\(126\) 0 0
\(127\) 941.283i 0.657680i −0.944386 0.328840i \(-0.893342\pi\)
0.944386 0.328840i \(-0.106658\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −214.343 −0.142956 −0.0714779 0.997442i \(-0.522772\pi\)
−0.0714779 + 0.997442i \(0.522772\pi\)
\(132\) 0 0
\(133\) 243.678i 0.158869i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 499.514i 0.311506i 0.987796 + 0.155753i \(0.0497805\pi\)
−0.987796 + 0.155753i \(0.950220\pi\)
\(138\) 0 0
\(139\) 2660.48 1.62345 0.811723 0.584042i \(-0.198530\pi\)
0.811723 + 0.584042i \(0.198530\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2498.02i 1.46080i
\(144\) 0 0
\(145\) −1602.24 430.161i −0.917647 0.246365i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1334.89 0.733947 0.366973 0.930231i \(-0.380394\pi\)
0.366973 + 0.930231i \(0.380394\pi\)
\(150\) 0 0
\(151\) 259.478 0.139841 0.0699205 0.997553i \(-0.477725\pi\)
0.0699205 + 0.997553i \(0.477725\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1502.55 + 403.396i 0.778629 + 0.209042i
\(156\) 0 0
\(157\) 1063.58i 0.540654i 0.962769 + 0.270327i \(0.0871319\pi\)
−0.962769 + 0.270327i \(0.912868\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 994.339 0.486738
\(162\) 0 0
\(163\) 3139.67i 1.50870i 0.656474 + 0.754349i \(0.272047\pi\)
−0.656474 + 0.754349i \(0.727953\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 936.411i 0.433902i −0.976182 0.216951i \(-0.930389\pi\)
0.976182 0.216951i \(-0.0696112\pi\)
\(168\) 0 0
\(169\) 415.988 0.189344
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1439.78i 0.632741i 0.948636 + 0.316371i \(0.102464\pi\)
−0.948636 + 0.316371i \(0.897536\pi\)
\(174\) 0 0
\(175\) −794.906 + 1373.71i −0.343367 + 0.593385i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2494.42 −1.04158 −0.520788 0.853686i \(-0.674362\pi\)
−0.520788 + 0.853686i \(0.674362\pi\)
\(180\) 0 0
\(181\) −1590.36 −0.653096 −0.326548 0.945181i \(-0.605886\pi\)
−0.326548 + 0.945181i \(0.605886\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 192.971 718.769i 0.0766894 0.285649i
\(186\) 0 0
\(187\) 7480.88i 2.92543i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2652.77 −1.00496 −0.502480 0.864589i \(-0.667579\pi\)
−0.502480 + 0.864589i \(0.667579\pi\)
\(192\) 0 0
\(193\) 3001.61i 1.11948i 0.828667 + 0.559742i \(0.189100\pi\)
−0.828667 + 0.559742i \(0.810900\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2176.06i 0.786994i 0.919326 + 0.393497i \(0.128735\pi\)
−0.919326 + 0.393497i \(0.871265\pi\)
\(198\) 0 0
\(199\) −4270.30 −1.52117 −0.760587 0.649236i \(-0.775089\pi\)
−0.760587 + 0.649236i \(0.775089\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1884.02i 0.651390i
\(204\) 0 0
\(205\) 2194.28 + 589.108i 0.747585 + 0.200708i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1136.00 −0.375975
\(210\) 0 0
\(211\) 2978.78 0.971886 0.485943 0.873991i \(-0.338476\pi\)
0.485943 + 0.873991i \(0.338476\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −837.453 + 3119.30i −0.265646 + 0.989462i
\(216\) 0 0
\(217\) 1766.79i 0.552708i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5333.65 −1.62344
\(222\) 0 0
\(223\) 3183.16i 0.955875i 0.878394 + 0.477937i \(0.158615\pi\)
−0.878394 + 0.477937i \(0.841385\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5910.41i 1.72814i −0.503372 0.864070i \(-0.667908\pi\)
0.503372 0.864070i \(-0.332092\pi\)
\(228\) 0 0
\(229\) −3465.59 −1.00006 −0.500028 0.866009i \(-0.666677\pi\)
−0.500028 + 0.866009i \(0.666677\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4611.51i 1.29661i −0.761380 0.648305i \(-0.775478\pi\)
0.761380 0.648305i \(-0.224522\pi\)
\(234\) 0 0
\(235\) −1044.89 + 3891.95i −0.290047 + 1.08035i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4816.47 −1.30356 −0.651782 0.758406i \(-0.725978\pi\)
−0.651782 + 0.758406i \(0.725978\pi\)
\(240\) 0 0
\(241\) 3057.47 0.817217 0.408608 0.912710i \(-0.366014\pi\)
0.408608 + 0.912710i \(0.366014\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1962.94 + 526.999i 0.511867 + 0.137423i
\(246\) 0 0
\(247\) 809.935i 0.208643i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7498.54 1.88567 0.942836 0.333258i \(-0.108148\pi\)
0.942836 + 0.333258i \(0.108148\pi\)
\(252\) 0 0
\(253\) 4635.51i 1.15190i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2272.33i 0.551532i 0.961225 + 0.275766i \(0.0889316\pi\)
−0.961225 + 0.275766i \(0.911068\pi\)
\(258\) 0 0
\(259\) 845.176 0.202767
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5271.34i 1.23591i 0.786213 + 0.617955i \(0.212039\pi\)
−0.786213 + 0.617955i \(0.787961\pi\)
\(264\) 0 0
\(265\) 1991.27 7416.99i 0.461596 1.71933i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4315.61 −0.978169 −0.489085 0.872236i \(-0.662669\pi\)
−0.489085 + 0.872236i \(0.662669\pi\)
\(270\) 0 0
\(271\) −4471.27 −1.00225 −0.501125 0.865375i \(-0.667081\pi\)
−0.501125 + 0.865375i \(0.667081\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6404.07 + 3705.77i 1.40429 + 0.812605i
\(276\) 0 0
\(277\) 8112.09i 1.75960i 0.475348 + 0.879798i \(0.342322\pi\)
−0.475348 + 0.879798i \(0.657678\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3811.46 0.809155 0.404577 0.914504i \(-0.367419\pi\)
0.404577 + 0.914504i \(0.367419\pi\)
\(282\) 0 0
\(283\) 2362.60i 0.496261i −0.968727 0.248131i \(-0.920184\pi\)
0.968727 0.248131i \(-0.0798162\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2580.17i 0.530672i
\(288\) 0 0
\(289\) −11059.8 −2.25114
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6337.79i 1.26368i −0.775099 0.631839i \(-0.782300\pi\)
0.775099 0.631839i \(-0.217700\pi\)
\(294\) 0 0
\(295\) 897.420 + 240.935i 0.177118 + 0.0475517i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3304.98 −0.639237
\(300\) 0 0
\(301\) −3667.87 −0.702368
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2254.92 605.390i −0.423333 0.113654i
\(306\) 0 0
\(307\) 4170.44i 0.775308i 0.921805 + 0.387654i \(0.126715\pi\)
−0.921805 + 0.387654i \(0.873285\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5083.71 −0.926915 −0.463457 0.886119i \(-0.653391\pi\)
−0.463457 + 0.886119i \(0.653391\pi\)
\(312\) 0 0
\(313\) 1522.86i 0.275007i 0.990501 + 0.137504i \(0.0439078\pi\)
−0.990501 + 0.137504i \(0.956092\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4996.09i 0.885200i −0.896719 0.442600i \(-0.854056\pi\)
0.896719 0.442600i \(-0.145944\pi\)
\(318\) 0 0
\(319\) −8783.10 −1.54157
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2425.53i 0.417834i
\(324\) 0 0
\(325\) 2642.11 4565.92i 0.450947 0.779297i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4576.40 −0.766885
\(330\) 0 0
\(331\) −2832.04 −0.470281 −0.235141 0.971961i \(-0.575555\pi\)
−0.235141 + 0.971961i \(0.575555\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 557.453 2076.37i 0.0909162 0.338639i
\(336\) 0 0
\(337\) 1684.43i 0.272276i −0.990690 0.136138i \(-0.956531\pi\)
0.990690 0.136138i \(-0.0434690\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8236.60 1.30803
\(342\) 0 0
\(343\) 6663.20i 1.04892i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9350.30i 1.44654i 0.690564 + 0.723271i \(0.257362\pi\)
−0.690564 + 0.723271i \(0.742638\pi\)
\(348\) 0 0
\(349\) −4174.20 −0.640228 −0.320114 0.947379i \(-0.603721\pi\)
−0.320114 + 0.947379i \(0.603721\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6217.04i 0.937394i 0.883359 + 0.468697i \(0.155276\pi\)
−0.883359 + 0.468697i \(0.844724\pi\)
\(354\) 0 0
\(355\) 5407.27 + 1451.71i 0.808416 + 0.217039i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8149.73 −1.19812 −0.599062 0.800703i \(-0.704460\pi\)
−0.599062 + 0.800703i \(0.704460\pi\)
\(360\) 0 0
\(361\) −6490.67 −0.946300
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 355.723 1324.98i 0.0510120 0.190007i
\(366\) 0 0
\(367\) 11868.2i 1.68806i −0.536299 0.844028i \(-0.680178\pi\)
0.536299 0.844028i \(-0.319822\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8721.37 1.22046
\(372\) 0 0
\(373\) 3286.85i 0.456265i −0.973630 0.228132i \(-0.926738\pi\)
0.973630 0.228132i \(-0.0732619\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6262.09i 0.855475i
\(378\) 0 0
\(379\) 8326.24 1.12847 0.564235 0.825614i \(-0.309171\pi\)
0.564235 + 0.825614i \(0.309171\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4249.23i 0.566908i 0.958986 + 0.283454i \(0.0914803\pi\)
−0.958986 + 0.283454i \(0.908520\pi\)
\(384\) 0 0
\(385\) −2178.74 + 8115.26i −0.288413 + 1.07426i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7841.83 −1.02210 −0.511050 0.859551i \(-0.670743\pi\)
−0.511050 + 0.859551i \(0.670743\pi\)
\(390\) 0 0
\(391\) −9897.52 −1.28015
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3127.27 839.592i −0.398354 0.106948i
\(396\) 0 0
\(397\) 401.794i 0.0507946i −0.999677 0.0253973i \(-0.991915\pi\)
0.999677 0.0253973i \(-0.00808508\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9732.89 −1.21206 −0.606032 0.795441i \(-0.707239\pi\)
−0.606032 + 0.795441i \(0.707239\pi\)
\(402\) 0 0
\(403\) 5872.46i 0.725876i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3940.12i 0.479864i
\(408\) 0 0
\(409\) 5629.67 0.680609 0.340305 0.940315i \(-0.389470\pi\)
0.340305 + 0.940315i \(0.389470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1055.25i 0.125727i
\(414\) 0 0
\(415\) −1663.87 + 6197.49i −0.196810 + 0.733067i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9773.77 −1.13957 −0.569785 0.821794i \(-0.692974\pi\)
−0.569785 + 0.821794i \(0.692974\pi\)
\(420\) 0 0
\(421\) 3037.95 0.351688 0.175844 0.984418i \(-0.443735\pi\)
0.175844 + 0.984418i \(0.443735\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7912.39 13673.7i 0.903076 1.56064i
\(426\) 0 0
\(427\) 2651.48i 0.300502i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1873.45 0.209376 0.104688 0.994505i \(-0.466616\pi\)
0.104688 + 0.994505i \(0.466616\pi\)
\(432\) 0 0
\(433\) 11855.8i 1.31583i −0.753092 0.657915i \(-0.771439\pi\)
0.753092 0.657915i \(-0.228561\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1502.98i 0.164524i
\(438\) 0 0
\(439\) −16243.8 −1.76600 −0.882999 0.469375i \(-0.844479\pi\)
−0.882999 + 0.469375i \(0.844479\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3905.52i 0.418864i −0.977823 0.209432i \(-0.932839\pi\)
0.977823 0.209432i \(-0.0671614\pi\)
\(444\) 0 0
\(445\) −6102.48 1638.36i −0.650079 0.174530i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6852.71 −0.720265 −0.360133 0.932901i \(-0.617269\pi\)
−0.360133 + 0.932901i \(0.617269\pi\)
\(450\) 0 0
\(451\) 12028.5 1.25588
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5785.94 + 1553.38i 0.596152 + 0.160052i
\(456\) 0 0
\(457\) 5800.75i 0.593758i 0.954915 + 0.296879i \(0.0959458\pi\)
−0.954915 + 0.296879i \(0.904054\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5263.63 0.531783 0.265891 0.964003i \(-0.414334\pi\)
0.265891 + 0.964003i \(0.414334\pi\)
\(462\) 0 0
\(463\) 13636.6i 1.36879i 0.729113 + 0.684394i \(0.239933\pi\)
−0.729113 + 0.684394i \(0.760067\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13158.3i 1.30384i −0.758287 0.651920i \(-0.773964\pi\)
0.758287 0.651920i \(-0.226036\pi\)
\(468\) 0 0
\(469\) 2441.53 0.240383
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17099.3i 1.66221i
\(474\) 0 0
\(475\) −2076.40 1201.53i −0.200572 0.116063i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6775.90 0.646344 0.323172 0.946340i \(-0.395251\pi\)
0.323172 + 0.946340i \(0.395251\pi\)
\(480\) 0 0
\(481\) −2809.19 −0.266295
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1866.82 + 6953.44i −0.174780 + 0.651010i
\(486\) 0 0
\(487\) 5933.64i 0.552113i 0.961141 + 0.276057i \(0.0890277\pi\)
−0.961141 + 0.276057i \(0.910972\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11934.5 −1.09694 −0.548468 0.836171i \(-0.684789\pi\)
−0.548468 + 0.836171i \(0.684789\pi\)
\(492\) 0 0
\(493\) 18753.3i 1.71319i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6358.21i 0.573853i
\(498\) 0 0
\(499\) −1567.65 −0.140636 −0.0703182 0.997525i \(-0.522401\pi\)
−0.0703182 + 0.997525i \(0.522401\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 450.509i 0.0399348i −0.999801 0.0199674i \(-0.993644\pi\)
0.999801 0.0199674i \(-0.00635624\pi\)
\(504\) 0 0
\(505\) 8054.40 + 2162.40i 0.709734 + 0.190546i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7016.11 −0.610969 −0.305485 0.952197i \(-0.598818\pi\)
−0.305485 + 0.952197i \(0.598818\pi\)
\(510\) 0 0
\(511\) 1557.99 0.134876
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2140.64 7973.36i 0.183161 0.682229i
\(516\) 0 0
\(517\) 21334.7i 1.81489i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16356.0 1.37538 0.687688 0.726006i \(-0.258626\pi\)
0.687688 + 0.726006i \(0.258626\pi\)
\(522\) 0 0
\(523\) 13190.5i 1.10283i −0.834232 0.551414i \(-0.814089\pi\)
0.834232 0.551414i \(-0.185911\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17586.4i 1.45366i
\(528\) 0 0
\(529\) 6034.03 0.495934
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8575.97i 0.696935i
\(534\) 0 0
\(535\) 1619.18 6031.05i 0.130847 0.487374i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10760.4 0.859891
\(540\) 0 0
\(541\) 21997.6 1.74815 0.874076 0.485789i \(-0.161468\pi\)
0.874076 + 0.485789i \(0.161468\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16452.8 + 4417.16i 1.29314 + 0.347175i
\(546\) 0 0
\(547\) 212.663i 0.0166230i 0.999965 + 0.00831151i \(0.00264567\pi\)
−0.999965 + 0.00831151i \(0.997354\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2847.76 0.220179
\(552\) 0 0
\(553\) 3677.24i 0.282771i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6641.66i 0.505235i −0.967566 0.252618i \(-0.918709\pi\)
0.967566 0.252618i \(-0.0812915\pi\)
\(558\) 0 0
\(559\) 12191.3 0.922425
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7122.94i 0.533208i −0.963806 0.266604i \(-0.914098\pi\)
0.963806 0.266604i \(-0.0859016\pi\)
\(564\) 0 0
\(565\) 169.371 630.865i 0.0126115 0.0469747i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5951.39 0.438480 0.219240 0.975671i \(-0.429642\pi\)
0.219240 + 0.975671i \(0.429642\pi\)
\(570\) 0 0
\(571\) 23612.2 1.73054 0.865272 0.501303i \(-0.167146\pi\)
0.865272 + 0.501303i \(0.167146\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4902.89 8472.86i 0.355591 0.614509i
\(576\) 0 0
\(577\) 25398.1i 1.83247i −0.400636 0.916237i \(-0.631211\pi\)
0.400636 0.916237i \(-0.368789\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7287.41 −0.520366
\(582\) 0 0
\(583\) 40658.1i 2.88832i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17994.6i 1.26528i 0.774448 + 0.632638i \(0.218028\pi\)
−0.774448 + 0.632638i \(0.781972\pi\)
\(588\) 0 0
\(589\) −2670.56 −0.186823
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14842.0i 1.02780i −0.857850 0.513900i \(-0.828200\pi\)
0.857850 0.513900i \(-0.171800\pi\)
\(594\) 0 0
\(595\) 17327.3 + 4651.95i 1.19387 + 0.320523i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25071.6 −1.71018 −0.855089 0.518481i \(-0.826498\pi\)
−0.855089 + 0.518481i \(0.826498\pi\)
\(600\) 0 0
\(601\) −2772.27 −0.188159 −0.0940794 0.995565i \(-0.529991\pi\)
−0.0940794 + 0.995565i \(0.529991\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23460.4 + 6298.54i 1.57653 + 0.423259i
\(606\) 0 0
\(607\) 19585.8i 1.30966i 0.755776 + 0.654830i \(0.227260\pi\)
−0.755776 + 0.654830i \(0.772740\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15211.0 1.00716
\(612\) 0 0
\(613\) 24247.5i 1.59763i −0.601579 0.798814i \(-0.705461\pi\)
0.601579 0.798814i \(-0.294539\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1225.83i 0.0799841i −0.999200 0.0399920i \(-0.987267\pi\)
0.999200 0.0399920i \(-0.0127333\pi\)
\(618\) 0 0
\(619\) −12430.1 −0.807122 −0.403561 0.914953i \(-0.632228\pi\)
−0.403561 + 0.914953i \(0.632228\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7175.69i 0.461457i
\(624\) 0 0
\(625\) 7785.95 + 13546.9i 0.498301 + 0.867004i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8412.77 −0.533289
\(630\) 0 0
\(631\) 6215.00 0.392100 0.196050 0.980594i \(-0.437188\pi\)
0.196050 + 0.980594i \(0.437188\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2728.76 10163.9i 0.170531 0.635186i
\(636\) 0 0
\(637\) 7671.81i 0.477187i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5059.76 −0.311776 −0.155888 0.987775i \(-0.549824\pi\)
−0.155888 + 0.987775i \(0.549824\pi\)
\(642\) 0 0
\(643\) 8676.69i 0.532154i 0.963952 + 0.266077i \(0.0857276\pi\)
−0.963952 + 0.266077i \(0.914272\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22787.4i 1.38465i 0.721587 + 0.692323i \(0.243413\pi\)
−0.721587 + 0.692323i \(0.756587\pi\)
\(648\) 0 0
\(649\) 4919.45 0.297543
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26813.1i 1.60686i 0.595402 + 0.803428i \(0.296993\pi\)
−0.595402 + 0.803428i \(0.703007\pi\)
\(654\) 0 0
\(655\) −2314.47 621.376i −0.138067 0.0370674i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1935.78 0.114427 0.0572134 0.998362i \(-0.481778\pi\)
0.0572134 + 0.998362i \(0.481778\pi\)
\(660\) 0 0
\(661\) 3371.84 0.198411 0.0992053 0.995067i \(-0.468370\pi\)
0.0992053 + 0.995067i \(0.468370\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 706.416 2631.22i 0.0411935 0.153435i
\(666\) 0 0
\(667\) 11620.4i 0.674579i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12360.9 −0.711161
\(672\) 0 0
\(673\) 22061.3i 1.26360i 0.775133 + 0.631798i \(0.217683\pi\)
−0.775133 + 0.631798i \(0.782317\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12747.5i 0.723674i −0.932241 0.361837i \(-0.882150\pi\)
0.932241 0.361837i \(-0.117850\pi\)
\(678\) 0 0
\(679\) −8176.31 −0.462118
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24562.0i 1.37605i 0.725689 + 0.688023i \(0.241521\pi\)
−0.725689 + 0.688023i \(0.758479\pi\)
\(684\) 0 0
\(685\) −1448.08 + 5393.73i −0.0807713 + 0.300853i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −28988.1 −1.60284
\(690\) 0 0
\(691\) 15853.1 0.872767 0.436383 0.899761i \(-0.356259\pi\)
0.436383 + 0.899761i \(0.356259\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28727.8 + 7712.68i 1.56792 + 0.420948i
\(696\) 0 0
\(697\) 25682.7i 1.39570i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18288.0 0.985347 0.492673 0.870214i \(-0.336020\pi\)
0.492673 + 0.870214i \(0.336020\pi\)
\(702\) 0 0
\(703\) 1277.51i 0.0685380i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9470.88i 0.503804i
\(708\) 0 0
\(709\) −11985.3 −0.634864 −0.317432 0.948281i \(-0.602821\pi\)
−0.317432 + 0.948281i \(0.602821\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10897.4i 0.572384i
\(714\) 0 0
\(715\) 7241.70 26973.5i 0.378775 1.41084i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17036.3 −0.883653 −0.441827 0.897101i \(-0.645669\pi\)
−0.441827 + 0.897101i \(0.645669\pi\)
\(720\) 0 0
\(721\) 9375.59 0.484279
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −16053.9 9289.73i −0.822382 0.475878i
\(726\) 0 0
\(727\) 1219.85i 0.0622307i −0.999516 0.0311154i \(-0.990094\pi\)
0.999516 0.0311154i \(-0.00990592\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 36509.5 1.84727
\(732\) 0 0
\(733\) 17750.6i 0.894453i −0.894421 0.447226i \(-0.852412\pi\)
0.894421 0.447226i \(-0.147588\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11382.2i 0.568884i
\(738\) 0 0
\(739\) −25825.4 −1.28553 −0.642763 0.766065i \(-0.722212\pi\)
−0.642763 + 0.766065i \(0.722212\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11549.8i 0.570282i 0.958486 + 0.285141i \(0.0920405\pi\)
−0.958486 + 0.285141i \(0.907959\pi\)
\(744\) 0 0
\(745\) 14414.0 + 3869.81i 0.708845 + 0.190307i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7091.69 0.345961
\(750\) 0 0
\(751\) −29468.3 −1.43184 −0.715921 0.698182i \(-0.753993\pi\)
−0.715921 + 0.698182i \(0.753993\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2801.83 + 752.220i 0.135058 + 0.0362597i
\(756\) 0 0
\(757\) 13820.2i 0.663545i −0.943359 0.331772i \(-0.892353\pi\)
0.943359 0.331772i \(-0.107647\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1188.09 0.0565943 0.0282971 0.999600i \(-0.490992\pi\)
0.0282971 + 0.999600i \(0.490992\pi\)
\(762\) 0 0
\(763\) 19346.2i 0.917931i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3507.42i 0.165118i
\(768\) 0 0
\(769\) −29907.3 −1.40245 −0.701225 0.712940i \(-0.747363\pi\)
−0.701225 + 0.712940i \(0.747363\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27528.3i 1.28088i 0.768007 + 0.640442i \(0.221249\pi\)
−0.768007 + 0.640442i \(0.778751\pi\)
\(774\) 0 0
\(775\) 15055.0 + 8711.71i 0.697796 + 0.403785i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3900.02 −0.179374
\(780\) 0 0
\(781\) 29641.3 1.35807
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3083.29 + 11484.5i −0.140188 + 0.522163i
\(786\) 0 0
\(787\) 10038.2i 0.454666i −0.973817 0.227333i \(-0.926999\pi\)
0.973817 0.227333i \(-0.0730006\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 741.812 0.0333449
\(792\) 0 0
\(793\) 8812.99i 0.394651i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41075.3i 1.82555i −0.408466 0.912773i \(-0.633936\pi\)
0.408466 0.912773i \(-0.366064\pi\)
\(798\) 0 0
\(799\) 45552.9 2.01695
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7263.20i 0.319194i
\(804\) 0 0
\(805\) 10736.8 + 2882.57i 0.470091 + 0.126208i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2134.47 −0.0927616 −0.0463808 0.998924i \(-0.514769\pi\)
−0.0463808 + 0.998924i \(0.514769\pi\)
\(810\) 0 0
\(811\) −5866.38 −0.254003 −0.127001 0.991903i \(-0.540535\pi\)
−0.127001 + 0.991903i \(0.540535\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9101.83 + 33902.0i −0.391194 + 1.45710i
\(816\) 0 0
\(817\) 5544.11i 0.237410i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28572.6 1.21460 0.607301 0.794472i \(-0.292252\pi\)
0.607301 + 0.794472i \(0.292252\pi\)
\(822\) 0 0
\(823\) 15900.5i 0.673460i 0.941601 + 0.336730i \(0.109321\pi\)
−0.941601 + 0.336730i \(0.890679\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34717.6i 1.45979i −0.683558 0.729896i \(-0.739569\pi\)
0.683558 0.729896i \(-0.260431\pi\)
\(828\) 0 0
\(829\) 812.559 0.0340426 0.0170213 0.999855i \(-0.494582\pi\)
0.0170213 + 0.999855i \(0.494582\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22975.0i 0.955626i
\(834\) 0 0
\(835\) 2714.64 10111.3i 0.112508 0.419062i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 852.588 0.0350829 0.0175415 0.999846i \(-0.494416\pi\)
0.0175415 + 0.999846i \(0.494416\pi\)
\(840\) 0 0
\(841\) −2371.29 −0.0972277
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4491.82 + 1205.94i 0.182868 + 0.0490954i
\(846\) 0 0
\(847\) 27586.3i 1.11910i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5212.95 −0.209985
\(852\) 0 0
\(853\) 8851.54i 0.355300i 0.984094 + 0.177650i \(0.0568495\pi\)
−0.984094 + 0.177650i \(0.943150\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1712.28i 0.0682502i −0.999418 0.0341251i \(-0.989136\pi\)
0.999418 0.0341251i \(-0.0108645\pi\)
\(858\) 0 0
\(859\) 33276.7 1.32175 0.660877 0.750495i \(-0.270185\pi\)
0.660877 + 0.750495i \(0.270185\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5913.49i 0.233253i 0.993176 + 0.116627i \(0.0372081\pi\)
−0.993176 + 0.116627i \(0.962792\pi\)
\(864\) 0 0
\(865\) −4173.89 + 15546.7i −0.164065 + 0.611101i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −17142.9 −0.669199
\(870\) 0 0
\(871\) −8115.15 −0.315696
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12565.7 + 12528.8i −0.485484 + 0.484058i
\(876\) 0 0
\(877\) 38661.1i 1.48859i −0.667851 0.744295i \(-0.732786\pi\)
0.667851 0.744295i \(-0.267214\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −20876.4 −0.798348 −0.399174 0.916875i \(-0.630703\pi\)
−0.399174 + 0.916875i \(0.630703\pi\)
\(882\) 0 0
\(883\) 14713.8i 0.560770i −0.959888 0.280385i \(-0.909538\pi\)
0.959888 0.280385i \(-0.0904622\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 38213.1i 1.44653i 0.690571 + 0.723264i \(0.257359\pi\)
−0.690571 + 0.723264i \(0.742641\pi\)
\(888\) 0 0
\(889\) 11951.4 0.450886
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6917.38i 0.259218i
\(894\) 0 0
\(895\) −26934.7 7231.29i −1.00595 0.270073i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20647.7 −0.766007
\(900\) 0 0
\(901\) −86811.4 −3.20989
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17172.6 4610.42i −0.630760 0.169343i
\(906\) 0 0
\(907\) 30912.4i 1.13168i 0.824516 + 0.565838i \(0.191447\pi\)
−0.824516 + 0.565838i \(0.808553\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1390.58 −0.0505730 −0.0252865 0.999680i \(-0.508050\pi\)
−0.0252865 + 0.999680i \(0.508050\pi\)
\(912\) 0 0
\(913\) 33973.2i 1.23149i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2721.50i 0.0980063i
\(918\) 0 0
\(919\) −14064.7 −0.504843 −0.252422 0.967617i \(-0.581227\pi\)
−0.252422 + 0.967617i \(0.581227\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 21133.4i 0.753645i
\(924\) 0 0
\(925\) 4167.40 7201.82i 0.148133 0.255994i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 51692.7 1.82560 0.912799 0.408408i \(-0.133916\pi\)
0.912799 + 0.408408i \(0.133916\pi\)
\(930\) 0 0
\(931\) −3488.84 −0.122816
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 21686.9 80778.3i 0.758544 2.82538i
\(936\) 0 0
\(937\) 12479.3i 0.435092i 0.976050 + 0.217546i \(0.0698052\pi\)
−0.976050 + 0.217546i \(0.930195\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −41800.9 −1.44811 −0.724054 0.689743i \(-0.757723\pi\)
−0.724054 + 0.689743i \(0.757723\pi\)
\(942\) 0 0
\(943\) 15914.2i 0.549563i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6482.77i 0.222452i 0.993795 + 0.111226i \(0.0354777\pi\)
−0.993795 + 0.111226i \(0.964522\pi\)
\(948\) 0 0
\(949\) −5178.45 −0.177133
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28635.8i 0.973351i −0.873583 0.486675i \(-0.838209\pi\)
0.873583 0.486675i \(-0.161791\pi\)
\(954\) 0 0
\(955\) −28644.5 7690.32i −0.970590 0.260579i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6342.30 −0.213560
\(960\) 0 0
\(961\) −10428.0 −0.350038
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8701.60 + 32411.2i −0.290274 + 1.08120i
\(966\) 0 0
\(967\) 3086.04i 0.102627i −0.998683 0.0513135i \(-0.983659\pi\)
0.998683 0.0513135i \(-0.0163408\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11625.0 0.384205 0.192102 0.981375i \(-0.438469\pi\)
0.192102 + 0.981375i \(0.438469\pi\)
\(972\) 0 0
\(973\) 33780.0i 1.11299i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38232.0i 1.25194i 0.779845 + 0.625972i \(0.215298\pi\)
−0.779845 + 0.625972i \(0.784702\pi\)
\(978\) 0 0
\(979\) −33452.3 −1.09207
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 54290.3i 1.76154i −0.473546 0.880769i \(-0.657026\pi\)
0.473546 0.880769i \(-0.342974\pi\)
\(984\) 0 0
\(985\) −6308.35 + 23497.0i −0.204062 + 0.760078i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22623.0 0.727371
\(990\) 0 0
\(991\) −13673.7 −0.438303 −0.219152 0.975691i \(-0.570329\pi\)
−0.219152 + 0.975691i \(0.570329\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −46110.5 12379.5i −1.46915 0.394429i
\(996\) 0 0
\(997\) 3392.56i 0.107767i 0.998547 + 0.0538834i \(0.0171599\pi\)
−0.998547 + 0.0538834i \(0.982840\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.f.m.289.4 4
3.2 odd 2 80.4.c.c.49.4 4
4.3 odd 2 360.4.f.e.289.4 4
5.4 even 2 inner 720.4.f.m.289.3 4
12.11 even 2 40.4.c.a.9.1 4
15.2 even 4 400.4.a.x.1.2 2
15.8 even 4 400.4.a.v.1.1 2
15.14 odd 2 80.4.c.c.49.1 4
20.3 even 4 1800.4.a.bp.1.1 2
20.7 even 4 1800.4.a.bk.1.2 2
20.19 odd 2 360.4.f.e.289.3 4
24.5 odd 2 320.4.c.h.129.1 4
24.11 even 2 320.4.c.g.129.4 4
60.23 odd 4 200.4.a.l.1.2 2
60.47 odd 4 200.4.a.k.1.1 2
60.59 even 2 40.4.c.a.9.4 yes 4
120.29 odd 2 320.4.c.h.129.4 4
120.53 even 4 1600.4.a.cm.1.2 2
120.59 even 2 320.4.c.g.129.1 4
120.77 even 4 1600.4.a.cf.1.1 2
120.83 odd 4 1600.4.a.ce.1.1 2
120.107 odd 4 1600.4.a.cl.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.c.a.9.1 4 12.11 even 2
40.4.c.a.9.4 yes 4 60.59 even 2
80.4.c.c.49.1 4 15.14 odd 2
80.4.c.c.49.4 4 3.2 odd 2
200.4.a.k.1.1 2 60.47 odd 4
200.4.a.l.1.2 2 60.23 odd 4
320.4.c.g.129.1 4 120.59 even 2
320.4.c.g.129.4 4 24.11 even 2
320.4.c.h.129.1 4 24.5 odd 2
320.4.c.h.129.4 4 120.29 odd 2
360.4.f.e.289.3 4 20.19 odd 2
360.4.f.e.289.4 4 4.3 odd 2
400.4.a.v.1.1 2 15.8 even 4
400.4.a.x.1.2 2 15.2 even 4
720.4.f.m.289.3 4 5.4 even 2 inner
720.4.f.m.289.4 4 1.1 even 1 trivial
1600.4.a.ce.1.1 2 120.83 odd 4
1600.4.a.cf.1.1 2 120.77 even 4
1600.4.a.cl.1.2 2 120.107 odd 4
1600.4.a.cm.1.2 2 120.53 even 4
1800.4.a.bk.1.2 2 20.7 even 4
1800.4.a.bp.1.1 2 20.3 even 4