Properties

Label 720.4.f.f.289.2
Level $720$
Weight $4$
Character 720.289
Analytic conductor $42.481$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,4,Mod(289,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 720.289
Dual form 720.4.f.f.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.00000 + 10.0000i) q^{5} -26.0000i q^{7} +O(q^{10})\) \(q+(5.00000 + 10.0000i) q^{5} -26.0000i q^{7} -28.0000 q^{11} -12.0000i q^{13} +64.0000i q^{17} -60.0000 q^{19} +58.0000i q^{23} +(-75.0000 + 100.000i) q^{25} +90.0000 q^{29} +128.000 q^{31} +(260.000 - 130.000i) q^{35} +236.000i q^{37} -242.000 q^{41} +362.000i q^{43} +226.000i q^{47} -333.000 q^{49} -108.000i q^{53} +(-140.000 - 280.000i) q^{55} +20.0000 q^{59} +542.000 q^{61} +(120.000 - 60.0000i) q^{65} +434.000i q^{67} -1128.00 q^{71} -632.000i q^{73} +728.000i q^{77} -720.000 q^{79} +478.000i q^{83} +(-640.000 + 320.000i) q^{85} -490.000 q^{89} -312.000 q^{91} +(-300.000 - 600.000i) q^{95} +1456.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 10 q^{5} - 56 q^{11} - 120 q^{19} - 150 q^{25} + 180 q^{29} + 256 q^{31} + 520 q^{35} - 484 q^{41} - 666 q^{49} - 280 q^{55} + 40 q^{59} + 1084 q^{61} + 240 q^{65} - 2256 q^{71} - 1440 q^{79} - 1280 q^{85} - 980 q^{89} - 624 q^{91} - 600 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 + 10.0000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) 26.0000i 1.40387i −0.712242 0.701934i \(-0.752320\pi\)
0.712242 0.701934i \(-0.247680\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −28.0000 −0.767483 −0.383742 0.923440i \(-0.625365\pi\)
−0.383742 + 0.923440i \(0.625365\pi\)
\(12\) 0 0
\(13\) 12.0000i 0.256015i −0.991773 0.128008i \(-0.959142\pi\)
0.991773 0.128008i \(-0.0408582\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 64.0000i 0.913075i 0.889704 + 0.456538i \(0.150911\pi\)
−0.889704 + 0.456538i \(0.849089\pi\)
\(18\) 0 0
\(19\) −60.0000 −0.724471 −0.362235 0.932087i \(-0.617986\pi\)
−0.362235 + 0.932087i \(0.617986\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 58.0000i 0.525819i 0.964821 + 0.262909i \(0.0846821\pi\)
−0.964821 + 0.262909i \(0.915318\pi\)
\(24\) 0 0
\(25\) −75.0000 + 100.000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 90.0000 0.576296 0.288148 0.957586i \(-0.406961\pi\)
0.288148 + 0.957586i \(0.406961\pi\)
\(30\) 0 0
\(31\) 128.000 0.741596 0.370798 0.928714i \(-0.379084\pi\)
0.370798 + 0.928714i \(0.379084\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 260.000 130.000i 1.25566 0.627829i
\(36\) 0 0
\(37\) 236.000i 1.04860i 0.851534 + 0.524299i \(0.175673\pi\)
−0.851534 + 0.524299i \(0.824327\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −242.000 −0.921806 −0.460903 0.887450i \(-0.652474\pi\)
−0.460903 + 0.887450i \(0.652474\pi\)
\(42\) 0 0
\(43\) 362.000i 1.28383i 0.766778 + 0.641913i \(0.221859\pi\)
−0.766778 + 0.641913i \(0.778141\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 226.000i 0.701393i 0.936489 + 0.350697i \(0.114055\pi\)
−0.936489 + 0.350697i \(0.885945\pi\)
\(48\) 0 0
\(49\) −333.000 −0.970845
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 108.000i 0.279905i −0.990158 0.139952i \(-0.955305\pi\)
0.990158 0.139952i \(-0.0446949\pi\)
\(54\) 0 0
\(55\) −140.000 280.000i −0.343229 0.686458i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 20.0000 0.0441318 0.0220659 0.999757i \(-0.492976\pi\)
0.0220659 + 0.999757i \(0.492976\pi\)
\(60\) 0 0
\(61\) 542.000 1.13764 0.568820 0.822462i \(-0.307400\pi\)
0.568820 + 0.822462i \(0.307400\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 120.000 60.0000i 0.228987 0.114494i
\(66\) 0 0
\(67\) 434.000i 0.791366i 0.918387 + 0.395683i \(0.129492\pi\)
−0.918387 + 0.395683i \(0.870508\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1128.00 −1.88548 −0.942739 0.333531i \(-0.891760\pi\)
−0.942739 + 0.333531i \(0.891760\pi\)
\(72\) 0 0
\(73\) 632.000i 1.01329i −0.862155 0.506644i \(-0.830886\pi\)
0.862155 0.506644i \(-0.169114\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 728.000i 1.07745i
\(78\) 0 0
\(79\) −720.000 −1.02540 −0.512698 0.858569i \(-0.671354\pi\)
−0.512698 + 0.858569i \(0.671354\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 478.000i 0.632136i 0.948736 + 0.316068i \(0.102363\pi\)
−0.948736 + 0.316068i \(0.897637\pi\)
\(84\) 0 0
\(85\) −640.000 + 320.000i −0.816679 + 0.408340i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −490.000 −0.583594 −0.291797 0.956480i \(-0.594253\pi\)
−0.291797 + 0.956480i \(0.594253\pi\)
\(90\) 0 0
\(91\) −312.000 −0.359412
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −300.000 600.000i −0.323993 0.647986i
\(96\) 0 0
\(97\) 1456.00i 1.52407i 0.647538 + 0.762033i \(0.275799\pi\)
−0.647538 + 0.762033i \(0.724201\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 578.000 0.569437 0.284719 0.958611i \(-0.408100\pi\)
0.284719 + 0.958611i \(0.408100\pi\)
\(102\) 0 0
\(103\) 1462.00i 1.39859i 0.714831 + 0.699297i \(0.246503\pi\)
−0.714831 + 0.699297i \(0.753497\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 966.000i 0.872773i 0.899759 + 0.436387i \(0.143742\pi\)
−0.899759 + 0.436387i \(0.856258\pi\)
\(108\) 0 0
\(109\) −370.000 −0.325134 −0.162567 0.986698i \(-0.551977\pi\)
−0.162567 + 0.986698i \(0.551977\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 528.000i 0.439558i −0.975550 0.219779i \(-0.929466\pi\)
0.975550 0.219779i \(-0.0705336\pi\)
\(114\) 0 0
\(115\) −580.000 + 290.000i −0.470307 + 0.235153i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1664.00 1.28184
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1375.00 250.000i −0.983870 0.178885i
\(126\) 0 0
\(127\) 1534.00i 1.07181i 0.844277 + 0.535907i \(0.180030\pi\)
−0.844277 + 0.535907i \(0.819970\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 0.00800340 0.00400170 0.999992i \(-0.498726\pi\)
0.00400170 + 0.999992i \(0.498726\pi\)
\(132\) 0 0
\(133\) 1560.00i 1.01706i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1224.00i 0.763309i 0.924305 + 0.381655i \(0.124646\pi\)
−0.924305 + 0.381655i \(0.875354\pi\)
\(138\) 0 0
\(139\) 3100.00 1.89164 0.945822 0.324685i \(-0.105258\pi\)
0.945822 + 0.324685i \(0.105258\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 336.000i 0.196488i
\(144\) 0 0
\(145\) 450.000 + 900.000i 0.257727 + 0.515455i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 250.000 0.137455 0.0687275 0.997635i \(-0.478106\pi\)
0.0687275 + 0.997635i \(0.478106\pi\)
\(150\) 0 0
\(151\) −2152.00 −1.15978 −0.579892 0.814694i \(-0.696905\pi\)
−0.579892 + 0.814694i \(0.696905\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 640.000 + 1280.00i 0.331652 + 0.663304i
\(156\) 0 0
\(157\) 524.000i 0.266368i −0.991091 0.133184i \(-0.957480\pi\)
0.991091 0.133184i \(-0.0425201\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1508.00 0.738180
\(162\) 0 0
\(163\) 3518.00i 1.69050i −0.534373 0.845249i \(-0.679452\pi\)
0.534373 0.845249i \(-0.320548\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 534.000i 0.247438i −0.992317 0.123719i \(-0.960518\pi\)
0.992317 0.123719i \(-0.0394822\pi\)
\(168\) 0 0
\(169\) 2053.00 0.934456
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4252.00i 1.86863i 0.356444 + 0.934317i \(0.383989\pi\)
−0.356444 + 0.934317i \(0.616011\pi\)
\(174\) 0 0
\(175\) 2600.00 + 1950.00i 1.12309 + 0.842321i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2500.00 −1.04390 −0.521952 0.852975i \(-0.674796\pi\)
−0.521952 + 0.852975i \(0.674796\pi\)
\(180\) 0 0
\(181\) −2578.00 −1.05868 −0.529340 0.848410i \(-0.677561\pi\)
−0.529340 + 0.848410i \(0.677561\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2360.00 + 1180.00i −0.937895 + 0.468948i
\(186\) 0 0
\(187\) 1792.00i 0.700770i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −768.000 −0.290945 −0.145473 0.989362i \(-0.546470\pi\)
−0.145473 + 0.989362i \(0.546470\pi\)
\(192\) 0 0
\(193\) 2608.00i 0.972684i 0.873769 + 0.486342i \(0.161669\pi\)
−0.873769 + 0.486342i \(0.838331\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5116.00i 1.85025i −0.379659 0.925127i \(-0.623959\pi\)
0.379659 0.925127i \(-0.376041\pi\)
\(198\) 0 0
\(199\) −3480.00 −1.23965 −0.619826 0.784739i \(-0.712797\pi\)
−0.619826 + 0.784739i \(0.712797\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2340.00i 0.809043i
\(204\) 0 0
\(205\) −1210.00 2420.00i −0.412244 0.824488i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1680.00 0.556019
\(210\) 0 0
\(211\) −3132.00 −1.02188 −0.510938 0.859618i \(-0.670702\pi\)
−0.510938 + 0.859618i \(0.670702\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3620.00 + 1810.00i −1.14829 + 0.574144i
\(216\) 0 0
\(217\) 3328.00i 1.04110i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 768.000 0.233761
\(222\) 0 0
\(223\) 62.0000i 0.0186181i 0.999957 + 0.00930903i \(0.00296320\pi\)
−0.999957 + 0.00930903i \(0.997037\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5314.00i 1.55376i −0.629651 0.776878i \(-0.716802\pi\)
0.629651 0.776878i \(-0.283198\pi\)
\(228\) 0 0
\(229\) 190.000 0.0548277 0.0274139 0.999624i \(-0.491273\pi\)
0.0274139 + 0.999624i \(0.491273\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2408.00i 0.677053i −0.940957 0.338526i \(-0.890072\pi\)
0.940957 0.338526i \(-0.109928\pi\)
\(234\) 0 0
\(235\) −2260.00 + 1130.00i −0.627345 + 0.313673i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5680.00 1.53727 0.768637 0.639685i \(-0.220935\pi\)
0.768637 + 0.639685i \(0.220935\pi\)
\(240\) 0 0
\(241\) −278.000 −0.0743052 −0.0371526 0.999310i \(-0.511829\pi\)
−0.0371526 + 0.999310i \(0.511829\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1665.00 3330.00i −0.434175 0.868351i
\(246\) 0 0
\(247\) 720.000i 0.185476i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3252.00 0.817787 0.408893 0.912582i \(-0.365915\pi\)
0.408893 + 0.912582i \(0.365915\pi\)
\(252\) 0 0
\(253\) 1624.00i 0.403557i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1536.00i 0.372813i −0.982473 0.186407i \(-0.940316\pi\)
0.982473 0.186407i \(-0.0596842\pi\)
\(258\) 0 0
\(259\) 6136.00 1.47209
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4858.00i 1.13900i 0.821991 + 0.569500i \(0.192863\pi\)
−0.821991 + 0.569500i \(0.807137\pi\)
\(264\) 0 0
\(265\) 1080.00 540.000i 0.250354 0.125177i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2610.00 0.591578 0.295789 0.955253i \(-0.404417\pi\)
0.295789 + 0.955253i \(0.404417\pi\)
\(270\) 0 0
\(271\) 5168.00 1.15843 0.579213 0.815176i \(-0.303360\pi\)
0.579213 + 0.815176i \(0.303360\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2100.00 2800.00i 0.460490 0.613987i
\(276\) 0 0
\(277\) 1924.00i 0.417336i −0.977987 0.208668i \(-0.933087\pi\)
0.977987 0.208668i \(-0.0669127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3042.00 −0.645803 −0.322901 0.946433i \(-0.604658\pi\)
−0.322901 + 0.946433i \(0.604658\pi\)
\(282\) 0 0
\(283\) 1718.00i 0.360864i −0.983587 0.180432i \(-0.942250\pi\)
0.983587 0.180432i \(-0.0577496\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6292.00i 1.29409i
\(288\) 0 0
\(289\) 817.000 0.166294
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2292.00i 0.456997i 0.973544 + 0.228498i \(0.0733816\pi\)
−0.973544 + 0.228498i \(0.926618\pi\)
\(294\) 0 0
\(295\) 100.000 + 200.000i 0.0197364 + 0.0394727i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 696.000 0.134618
\(300\) 0 0
\(301\) 9412.00 1.80232
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2710.00 + 5420.00i 0.508768 + 1.01754i
\(306\) 0 0
\(307\) 5406.00i 1.00501i −0.864576 0.502503i \(-0.832413\pi\)
0.864576 0.502503i \(-0.167587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5688.00 −1.03710 −0.518548 0.855048i \(-0.673527\pi\)
−0.518548 + 0.855048i \(0.673527\pi\)
\(312\) 0 0
\(313\) 7352.00i 1.32767i −0.747881 0.663833i \(-0.768928\pi\)
0.747881 0.663833i \(-0.231072\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3484.00i 0.617290i 0.951177 + 0.308645i \(0.0998755\pi\)
−0.951177 + 0.308645i \(0.900124\pi\)
\(318\) 0 0
\(319\) −2520.00 −0.442298
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3840.00i 0.661496i
\(324\) 0 0
\(325\) 1200.00 + 900.000i 0.204812 + 0.153609i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5876.00 0.984664
\(330\) 0 0
\(331\) 7868.00 1.30654 0.653269 0.757125i \(-0.273397\pi\)
0.653269 + 0.757125i \(0.273397\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4340.00 + 2170.00i −0.707819 + 0.353910i
\(336\) 0 0
\(337\) 656.000i 0.106037i 0.998594 + 0.0530187i \(0.0168843\pi\)
−0.998594 + 0.0530187i \(0.983116\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3584.00 −0.569163
\(342\) 0 0
\(343\) 260.000i 0.0409291i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5754.00i 0.890176i −0.895487 0.445088i \(-0.853172\pi\)
0.895487 0.445088i \(-0.146828\pi\)
\(348\) 0 0
\(349\) 3110.00 0.477004 0.238502 0.971142i \(-0.423344\pi\)
0.238502 + 0.971142i \(0.423344\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7808.00i 1.17727i −0.808397 0.588637i \(-0.799665\pi\)
0.808397 0.588637i \(-0.200335\pi\)
\(354\) 0 0
\(355\) −5640.00 11280.0i −0.843212 1.68642i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9240.00 1.35841 0.679204 0.733949i \(-0.262325\pi\)
0.679204 + 0.733949i \(0.262325\pi\)
\(360\) 0 0
\(361\) −3259.00 −0.475142
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6320.00 3160.00i 0.906312 0.453156i
\(366\) 0 0
\(367\) 3214.00i 0.457137i 0.973528 + 0.228569i \(0.0734046\pi\)
−0.973528 + 0.228569i \(0.926595\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2808.00 −0.392949
\(372\) 0 0
\(373\) 348.000i 0.0483077i 0.999708 + 0.0241538i \(0.00768915\pi\)
−0.999708 + 0.0241538i \(0.992311\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1080.00i 0.147541i
\(378\) 0 0
\(379\) 4940.00 0.669527 0.334764 0.942302i \(-0.391344\pi\)
0.334764 + 0.942302i \(0.391344\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6142.00i 0.819430i −0.912214 0.409715i \(-0.865628\pi\)
0.912214 0.409715i \(-0.134372\pi\)
\(384\) 0 0
\(385\) −7280.00 + 3640.00i −0.963697 + 0.481848i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3050.00 0.397535 0.198768 0.980047i \(-0.436306\pi\)
0.198768 + 0.980047i \(0.436306\pi\)
\(390\) 0 0
\(391\) −3712.00 −0.480112
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3600.00 7200.00i −0.458571 0.917143i
\(396\) 0 0
\(397\) 5396.00i 0.682160i 0.940034 + 0.341080i \(0.110793\pi\)
−0.940034 + 0.341080i \(0.889207\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14482.0 −1.80348 −0.901741 0.432276i \(-0.857711\pi\)
−0.901741 + 0.432276i \(0.857711\pi\)
\(402\) 0 0
\(403\) 1536.00i 0.189860i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6608.00i 0.804782i
\(408\) 0 0
\(409\) 1090.00 0.131778 0.0658888 0.997827i \(-0.479012\pi\)
0.0658888 + 0.997827i \(0.479012\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 520.000i 0.0619553i
\(414\) 0 0
\(415\) −4780.00 + 2390.00i −0.565400 + 0.282700i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7180.00 0.837150 0.418575 0.908182i \(-0.362530\pi\)
0.418575 + 0.908182i \(0.362530\pi\)
\(420\) 0 0
\(421\) −8138.00 −0.942095 −0.471047 0.882108i \(-0.656124\pi\)
−0.471047 + 0.882108i \(0.656124\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6400.00 4800.00i −0.730460 0.547845i
\(426\) 0 0
\(427\) 14092.0i 1.59710i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −208.000 −0.0232460 −0.0116230 0.999932i \(-0.503700\pi\)
−0.0116230 + 0.999932i \(0.503700\pi\)
\(432\) 0 0
\(433\) 12992.0i 1.44193i −0.692971 0.720965i \(-0.743699\pi\)
0.692971 0.720965i \(-0.256301\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3480.00i 0.380940i
\(438\) 0 0
\(439\) 1080.00 0.117416 0.0587080 0.998275i \(-0.481302\pi\)
0.0587080 + 0.998275i \(0.481302\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9078.00i 0.973609i 0.873511 + 0.486805i \(0.161838\pi\)
−0.873511 + 0.486805i \(0.838162\pi\)
\(444\) 0 0
\(445\) −2450.00 4900.00i −0.260991 0.521983i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14310.0 1.50408 0.752039 0.659119i \(-0.229071\pi\)
0.752039 + 0.659119i \(0.229071\pi\)
\(450\) 0 0
\(451\) 6776.00 0.707471
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1560.00 3120.00i −0.160734 0.321468i
\(456\) 0 0
\(457\) 2344.00i 0.239929i −0.992778 0.119965i \(-0.961722\pi\)
0.992778 0.119965i \(-0.0382781\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11382.0 −1.14992 −0.574959 0.818182i \(-0.694982\pi\)
−0.574959 + 0.818182i \(0.694982\pi\)
\(462\) 0 0
\(463\) 16062.0i 1.61223i 0.591756 + 0.806117i \(0.298435\pi\)
−0.591756 + 0.806117i \(0.701565\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17166.0i 1.70096i 0.526008 + 0.850479i \(0.323688\pi\)
−0.526008 + 0.850479i \(0.676312\pi\)
\(468\) 0 0
\(469\) 11284.0 1.11097
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10136.0i 0.985315i
\(474\) 0 0
\(475\) 4500.00 6000.00i 0.434682 0.579577i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7520.00 −0.717323 −0.358661 0.933468i \(-0.616767\pi\)
−0.358661 + 0.933468i \(0.616767\pi\)
\(480\) 0 0
\(481\) 2832.00 0.268458
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14560.0 + 7280.00i −1.36317 + 0.681583i
\(486\) 0 0
\(487\) 11814.0i 1.09927i 0.835406 + 0.549634i \(0.185233\pi\)
−0.835406 + 0.549634i \(0.814767\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14052.0 1.29156 0.645782 0.763522i \(-0.276532\pi\)
0.645782 + 0.763522i \(0.276532\pi\)
\(492\) 0 0
\(493\) 5760.00i 0.526202i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29328.0i 2.64696i
\(498\) 0 0
\(499\) 7620.00 0.683603 0.341802 0.939772i \(-0.388963\pi\)
0.341802 + 0.939772i \(0.388963\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1818.00i 0.161154i 0.996748 + 0.0805772i \(0.0256763\pi\)
−0.996748 + 0.0805772i \(0.974324\pi\)
\(504\) 0 0
\(505\) 2890.00 + 5780.00i 0.254660 + 0.509320i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17850.0 1.55440 0.777198 0.629256i \(-0.216640\pi\)
0.777198 + 0.629256i \(0.216640\pi\)
\(510\) 0 0
\(511\) −16432.0 −1.42252
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14620.0 + 7310.00i −1.25094 + 0.625470i
\(516\) 0 0
\(517\) 6328.00i 0.538308i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19238.0 1.61772 0.808860 0.588001i \(-0.200085\pi\)
0.808860 + 0.588001i \(0.200085\pi\)
\(522\) 0 0
\(523\) 6278.00i 0.524891i −0.964947 0.262445i \(-0.915471\pi\)
0.964947 0.262445i \(-0.0845289\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8192.00i 0.677133i
\(528\) 0 0
\(529\) 8803.00 0.723514
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2904.00i 0.235997i
\(534\) 0 0
\(535\) −9660.00 + 4830.00i −0.780632 + 0.390316i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9324.00 0.745108
\(540\) 0 0
\(541\) −9818.00 −0.780238 −0.390119 0.920764i \(-0.627566\pi\)
−0.390119 + 0.920764i \(0.627566\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1850.00 3700.00i −0.145404 0.290808i
\(546\) 0 0
\(547\) 12514.0i 0.978172i 0.872236 + 0.489086i \(0.162670\pi\)
−0.872236 + 0.489086i \(0.837330\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5400.00 −0.417509
\(552\) 0 0
\(553\) 18720.0i 1.43952i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10596.0i 0.806045i −0.915190 0.403022i \(-0.867960\pi\)
0.915190 0.403022i \(-0.132040\pi\)
\(558\) 0 0
\(559\) 4344.00 0.328679
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14002.0i 1.04816i −0.851669 0.524080i \(-0.824409\pi\)
0.851669 0.524080i \(-0.175591\pi\)
\(564\) 0 0
\(565\) 5280.00 2640.00i 0.393153 0.196576i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7330.00 −0.540052 −0.270026 0.962853i \(-0.587032\pi\)
−0.270026 + 0.962853i \(0.587032\pi\)
\(570\) 0 0
\(571\) −5812.00 −0.425963 −0.212981 0.977056i \(-0.568317\pi\)
−0.212981 + 0.977056i \(0.568317\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5800.00 4350.00i −0.420655 0.315491i
\(576\) 0 0
\(577\) 16736.0i 1.20750i 0.797173 + 0.603751i \(0.206328\pi\)
−0.797173 + 0.603751i \(0.793672\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12428.0 0.887436
\(582\) 0 0
\(583\) 3024.00i 0.214822i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7434.00i 0.522716i −0.965242 0.261358i \(-0.915830\pi\)
0.965242 0.261358i \(-0.0841702\pi\)
\(588\) 0 0
\(589\) −7680.00 −0.537265
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25872.0i 1.79163i 0.444429 + 0.895814i \(0.353407\pi\)
−0.444429 + 0.895814i \(0.646593\pi\)
\(594\) 0 0
\(595\) 8320.00 + 16640.0i 0.573255 + 1.14651i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3720.00 0.253748 0.126874 0.991919i \(-0.459506\pi\)
0.126874 + 0.991919i \(0.459506\pi\)
\(600\) 0 0
\(601\) −12958.0 −0.879481 −0.439740 0.898125i \(-0.644930\pi\)
−0.439740 + 0.898125i \(0.644930\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2735.00 5470.00i −0.183791 0.367582i
\(606\) 0 0
\(607\) 7214.00i 0.482384i 0.970477 + 0.241192i \(0.0775384\pi\)
−0.970477 + 0.241192i \(0.922462\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2712.00 0.179568
\(612\) 0 0
\(613\) 4828.00i 0.318109i 0.987270 + 0.159055i \(0.0508446\pi\)
−0.987270 + 0.159055i \(0.949155\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27656.0i 1.80452i −0.431193 0.902260i \(-0.641907\pi\)
0.431193 0.902260i \(-0.358093\pi\)
\(618\) 0 0
\(619\) −21220.0 −1.37787 −0.688937 0.724821i \(-0.741922\pi\)
−0.688937 + 0.724821i \(0.741922\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12740.0i 0.819289i
\(624\) 0 0
\(625\) −4375.00 15000.0i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15104.0 −0.957450
\(630\) 0 0
\(631\) −17672.0 −1.11491 −0.557457 0.830206i \(-0.688223\pi\)
−0.557457 + 0.830206i \(0.688223\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15340.0 + 7670.00i −0.958660 + 0.479330i
\(636\) 0 0
\(637\) 3996.00i 0.248551i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7322.00 −0.451173 −0.225586 0.974223i \(-0.572430\pi\)
−0.225586 + 0.974223i \(0.572430\pi\)
\(642\) 0 0
\(643\) 8238.00i 0.505249i −0.967564 0.252624i \(-0.918706\pi\)
0.967564 0.252624i \(-0.0812937\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6426.00i 0.390467i 0.980757 + 0.195233i \(0.0625465\pi\)
−0.980757 + 0.195233i \(0.937454\pi\)
\(648\) 0 0
\(649\) −560.000 −0.0338705
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5908.00i 0.354055i −0.984206 0.177027i \(-0.943352\pi\)
0.984206 0.177027i \(-0.0566482\pi\)
\(654\) 0 0
\(655\) 60.0000 + 120.000i 0.00357923 + 0.00715845i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26780.0 1.58301 0.791503 0.611166i \(-0.209299\pi\)
0.791503 + 0.611166i \(0.209299\pi\)
\(660\) 0 0
\(661\) −24538.0 −1.44390 −0.721950 0.691945i \(-0.756754\pi\)
−0.721950 + 0.691945i \(0.756754\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15600.0 + 7800.00i −0.909687 + 0.454844i
\(666\) 0 0
\(667\) 5220.00i 0.303027i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15176.0 −0.873119
\(672\) 0 0
\(673\) 28848.0i 1.65232i 0.563439 + 0.826158i \(0.309478\pi\)
−0.563439 + 0.826158i \(0.690522\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26884.0i 1.52620i 0.646282 + 0.763099i \(0.276323\pi\)
−0.646282 + 0.763099i \(0.723677\pi\)
\(678\) 0 0
\(679\) 37856.0 2.13959
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14282.0i 0.800125i −0.916488 0.400063i \(-0.868988\pi\)
0.916488 0.400063i \(-0.131012\pi\)
\(684\) 0 0
\(685\) −12240.0 + 6120.00i −0.682725 + 0.341362i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1296.00 −0.0716599
\(690\) 0 0
\(691\) 3428.00 0.188723 0.0943613 0.995538i \(-0.469919\pi\)
0.0943613 + 0.995538i \(0.469919\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15500.0 + 31000.0i 0.845969 + 1.69194i
\(696\) 0 0
\(697\) 15488.0i 0.841678i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −26942.0 −1.45162 −0.725810 0.687895i \(-0.758535\pi\)
−0.725810 + 0.687895i \(0.758535\pi\)
\(702\) 0 0
\(703\) 14160.0i 0.759679i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15028.0i 0.799415i
\(708\) 0 0
\(709\) 1950.00 0.103292 0.0516458 0.998665i \(-0.483553\pi\)
0.0516458 + 0.998665i \(0.483553\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7424.00i 0.389945i
\(714\) 0 0
\(715\) −3360.00 + 1680.00i −0.175744 + 0.0878719i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12080.0 −0.626576 −0.313288 0.949658i \(-0.601430\pi\)
−0.313288 + 0.949658i \(0.601430\pi\)
\(720\) 0 0
\(721\) 38012.0 1.96344
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6750.00 + 9000.00i −0.345778 + 0.461037i
\(726\) 0 0
\(727\) 17226.0i 0.878785i −0.898295 0.439393i \(-0.855194\pi\)
0.898295 0.439393i \(-0.144806\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −23168.0 −1.17223
\(732\) 0 0
\(733\) 788.000i 0.0397073i 0.999803 + 0.0198536i \(0.00632003\pi\)
−0.999803 + 0.0198536i \(0.993680\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12152.0i 0.607360i
\(738\) 0 0
\(739\) −2060.00 −0.102542 −0.0512709 0.998685i \(-0.516327\pi\)
−0.0512709 + 0.998685i \(0.516327\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3258.00i 0.160867i 0.996760 + 0.0804337i \(0.0256305\pi\)
−0.996760 + 0.0804337i \(0.974369\pi\)
\(744\) 0 0
\(745\) 1250.00 + 2500.00i 0.0614718 + 0.122944i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 25116.0 1.22526
\(750\) 0 0
\(751\) 4528.00 0.220012 0.110006 0.993931i \(-0.464913\pi\)
0.110006 + 0.993931i \(0.464913\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10760.0 21520.0i −0.518671 1.03734i
\(756\) 0 0
\(757\) 18236.0i 0.875560i 0.899082 + 0.437780i \(0.144235\pi\)
−0.899082 + 0.437780i \(0.855765\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18678.0 0.889720 0.444860 0.895600i \(-0.353253\pi\)
0.444860 + 0.895600i \(0.353253\pi\)
\(762\) 0 0
\(763\) 9620.00i 0.456445i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 240.000i 0.0112984i
\(768\) 0 0
\(769\) −27390.0 −1.28441 −0.642203 0.766534i \(-0.721980\pi\)
−0.642203 + 0.766534i \(0.721980\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9252.00i 0.430493i 0.976560 + 0.215247i \(0.0690555\pi\)
−0.976560 + 0.215247i \(0.930944\pi\)
\(774\) 0 0
\(775\) −9600.00 + 12800.0i −0.444958 + 0.593277i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14520.0 0.667822
\(780\) 0 0
\(781\) 31584.0 1.44707
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5240.00 2620.00i 0.238247 0.119123i
\(786\) 0 0
\(787\) 5726.00i 0.259352i −0.991556 0.129676i \(-0.958606\pi\)
0.991556 0.129676i \(-0.0413937\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13728.0 −0.617082
\(792\) 0 0
\(793\) 6504.00i 0.291253i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\)