Properties

Label 720.4.f.d.289.2
Level $720$
Weight $4$
Character 720.289
Analytic conductor $42.481$
Analytic rank $0$
Dimension $2$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,4,Mod(289,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.289"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-328] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 289.2
Root \(-2.23607i\) of defining polynomial
Character \(\chi\) \(=\) 720.289
Dual form 720.4.f.d.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.1803i q^{5} -138.636i q^{17} -164.000 q^{19} +98.3870i q^{23} -125.000 q^{25} +232.000 q^{31} -545.601i q^{47} +343.000 q^{49} -621.627i q^{53} -358.000 q^{61} +304.000 q^{79} -1270.09i q^{83} +1550.00 q^{85} -1833.58i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 328 q^{19} - 250 q^{25} + 464 q^{31} + 686 q^{49} - 716 q^{61} + 608 q^{79} + 3100 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 11.1803i 1.00000i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 138.636i − 1.97790i −0.148265 0.988948i \(-0.547369\pi\)
0.148265 0.988948i \(-0.452631\pi\)
\(18\) 0 0
\(19\) −164.000 −1.98022 −0.990110 0.140293i \(-0.955195\pi\)
−0.990110 + 0.140293i \(0.955195\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 98.3870i 0.891961i 0.895043 + 0.445981i \(0.147145\pi\)
−0.895043 + 0.445981i \(0.852855\pi\)
\(24\) 0 0
\(25\) −125.000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 232.000 1.34414 0.672071 0.740486i \(-0.265405\pi\)
0.672071 + 0.740486i \(0.265405\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 545.601i − 1.69328i −0.532168 0.846639i \(-0.678623\pi\)
0.532168 0.846639i \(-0.321377\pi\)
\(48\) 0 0
\(49\) 343.000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 621.627i − 1.61108i −0.592544 0.805538i \(-0.701876\pi\)
0.592544 0.805538i \(-0.298124\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −358.000 −0.751430 −0.375715 0.926735i \(-0.622603\pi\)
−0.375715 + 0.926735i \(0.622603\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 304.000 0.432945 0.216473 0.976289i \(-0.430545\pi\)
0.216473 + 0.976289i \(0.430545\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 1270.09i − 1.67964i −0.542865 0.839820i \(-0.682660\pi\)
0.542865 0.839820i \(-0.317340\pi\)
\(84\) 0 0
\(85\) 1550.00 1.97790
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 1833.58i − 1.98022i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.8885i 0.0161622i 0.999967 + 0.00808108i \(0.00257232\pi\)
−0.999967 + 0.00808108i \(0.997428\pi\)
\(108\) 0 0
\(109\) −1834.00 −1.61161 −0.805804 0.592182i \(-0.798267\pi\)
−0.805804 + 0.592182i \(0.798267\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1426.61i − 1.18765i −0.804595 0.593824i \(-0.797617\pi\)
0.804595 0.593824i \(-0.202383\pi\)
\(114\) 0 0
\(115\) −1100.00 −0.891961
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1397.54i − 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1990.10i − 1.24106i −0.784181 0.620532i \(-0.786917\pi\)
0.784181 0.620532i \(-0.213083\pi\)
\(138\) 0 0
\(139\) −1604.00 −0.978773 −0.489387 0.872067i \(-0.662779\pi\)
−0.489387 + 0.872067i \(0.662779\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 3112.00 1.67716 0.838579 0.544779i \(-0.183387\pi\)
0.838579 + 0.544779i \(0.183387\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2593.84i 1.34414i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3765.54i − 1.74483i −0.488769 0.872414i \(-0.662554\pi\)
0.488769 0.872414i \(-0.337446\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 424.853i 0.186711i 0.995633 + 0.0933554i \(0.0297593\pi\)
−0.995633 + 0.0933554i \(0.970241\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1298.00 0.533036 0.266518 0.963830i \(-0.414127\pi\)
0.266518 + 0.963830i \(0.414127\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2553.59i − 0.923532i −0.887002 0.461766i \(-0.847216\pi\)
0.887002 0.461766i \(-0.152784\pi\)
\(198\) 0 0
\(199\) −5456.00 −1.94355 −0.971773 0.235919i \(-0.924190\pi\)
−0.971773 + 0.235919i \(0.924190\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4228.00 1.37947 0.689733 0.724063i \(-0.257728\pi\)
0.689733 + 0.724063i \(0.257728\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6457.76i 1.88818i 0.329688 + 0.944090i \(0.393057\pi\)
−0.329688 + 0.944090i \(0.606943\pi\)
\(228\) 0 0
\(229\) −286.000 −0.0825302 −0.0412651 0.999148i \(-0.513139\pi\)
−0.0412651 + 0.999148i \(0.513139\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4449.78i 1.25114i 0.780170 + 0.625568i \(0.215133\pi\)
−0.780170 + 0.625568i \(0.784867\pi\)
\(234\) 0 0
\(235\) 6100.00 1.69328
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1438.00 −0.384356 −0.192178 0.981360i \(-0.561555\pi\)
−0.192178 + 0.981360i \(0.561555\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3834.86i 1.00000i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6542.73i 1.58803i 0.607896 + 0.794017i \(0.292014\pi\)
−0.607896 + 0.794017i \(0.707986\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 6341.49i − 1.48682i −0.668837 0.743409i \(-0.733208\pi\)
0.668837 0.743409i \(-0.266792\pi\)
\(264\) 0 0
\(265\) 6950.00 1.61108
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −6752.00 −1.51349 −0.756743 0.653712i \(-0.773211\pi\)
−0.756743 + 0.653712i \(0.773211\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −14307.0 −2.91207
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3161.80i 0.630424i 0.949021 + 0.315212i \(0.102076\pi\)
−0.949021 + 0.315212i \(0.897924\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 4002.56i − 0.751430i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10084.7i 1.78679i 0.449276 + 0.893393i \(0.351682\pi\)
−0.449276 + 0.893393i \(0.648318\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 22736.3i 3.91667i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5852.00 −0.971767 −0.485884 0.874023i \(-0.661502\pi\)
−0.485884 + 0.874023i \(0.661502\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8550.72i 1.32284i 0.750014 + 0.661422i \(0.230047\pi\)
−0.750014 + 0.661422i \(0.769953\pi\)
\(348\) 0 0
\(349\) −3706.00 −0.568417 −0.284209 0.958762i \(-0.591731\pi\)
−0.284209 + 0.958762i \(0.591731\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 2473.09i − 0.372888i −0.982466 0.186444i \(-0.940304\pi\)
0.982466 0.186444i \(-0.0596962\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 20037.0 2.92127
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −4484.00 −0.607725 −0.303862 0.952716i \(-0.598276\pi\)
−0.303862 + 0.952716i \(0.598276\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 9561.43i − 1.27563i −0.770190 0.637815i \(-0.779839\pi\)
0.770190 0.637815i \(-0.220161\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 13640.0 1.76421
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3398.82i 0.432945i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −14326.0 −1.73197 −0.865984 0.500071i \(-0.833307\pi\)
−0.865984 + 0.500071i \(0.833307\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 14200.0 1.67964
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 6878.00 0.796231 0.398115 0.917335i \(-0.369664\pi\)
0.398115 + 0.917335i \(0.369664\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 17329.5i 1.97790i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 16135.5i − 1.76628i
\(438\) 0 0
\(439\) −16976.0 −1.84560 −0.922802 0.385274i \(-0.874107\pi\)
−0.922802 + 0.385274i \(0.874107\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18049.5i 1.93580i 0.251335 + 0.967900i \(0.419130\pi\)
−0.251335 + 0.967900i \(0.580870\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4329.03i − 0.428958i −0.976729 0.214479i \(-0.931195\pi\)
0.976729 0.214479i \(-0.0688054\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 20500.0 1.98022
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −19316.0 −1.73287 −0.866436 0.499289i \(-0.833595\pi\)
−0.866436 + 0.499289i \(0.833595\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 21958.2i − 1.94646i −0.229843 0.973228i \(-0.573821\pi\)
0.229843 0.973228i \(-0.426179\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 32163.6i − 2.65857i
\(528\) 0 0
\(529\) 2487.00 0.204405
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −200.000 −0.0161622
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3238.00 −0.257324 −0.128662 0.991688i \(-0.541068\pi\)
−0.128662 + 0.991688i \(0.541068\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 20504.7i − 1.61161i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26184.4i 1.99186i 0.0901226 + 0.995931i \(0.471274\pi\)
−0.0901226 + 0.995931i \(0.528726\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 14632.8i − 1.09538i −0.836681 0.547691i \(-0.815507\pi\)
0.836681 0.547691i \(-0.184493\pi\)
\(564\) 0 0
\(565\) 15950.0 1.18765
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −26012.0 −1.90642 −0.953212 0.302302i \(-0.902245\pi\)
−0.953212 + 0.302302i \(0.902245\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 12298.4i − 0.891961i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25777.4i 1.81252i 0.422725 + 0.906258i \(0.361074\pi\)
−0.422725 + 0.906258i \(0.638926\pi\)
\(588\) 0 0
\(589\) −38048.0 −2.66170
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 7866.49i − 0.544752i −0.962191 0.272376i \(-0.912191\pi\)
0.962191 0.272376i \(-0.0878094\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −13642.0 −0.925905 −0.462952 0.886383i \(-0.653210\pi\)
−0.462952 + 0.886383i \(0.653210\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 14881.0i − 1.00000i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 27991.1i − 1.82638i −0.407529 0.913192i \(-0.633609\pi\)
0.407529 0.913192i \(-0.366391\pi\)
\(618\) 0 0
\(619\) −3476.00 −0.225706 −0.112853 0.993612i \(-0.535999\pi\)
−0.112853 + 0.993612i \(0.535999\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 27808.0 1.75439 0.877194 0.480136i \(-0.159413\pi\)
0.877194 + 0.480136i \(0.159413\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 2638.56i − 0.160328i −0.996782 0.0801642i \(-0.974456\pi\)
0.996782 0.0801642i \(-0.0255445\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 22678.2i − 1.35906i −0.733647 0.679530i \(-0.762184\pi\)
0.733647 0.679530i \(-0.237816\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 32978.0 1.94054 0.970269 0.242029i \(-0.0778130\pi\)
0.970269 + 0.242029i \(0.0778130\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 32901.5i − 1.86781i −0.357521 0.933905i \(-0.616378\pi\)
0.357521 0.933905i \(-0.383622\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 27512.6i − 1.54135i −0.637231 0.770673i \(-0.719920\pi\)
0.637231 0.770673i \(-0.280080\pi\)
\(684\) 0 0
\(685\) 22250.0 1.24106
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 32812.0 1.80641 0.903204 0.429212i \(-0.141209\pi\)
0.903204 + 0.429212i \(0.141209\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 17933.3i − 0.978773i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −37726.0 −1.99835 −0.999175 0.0406201i \(-0.987067\pi\)
−0.999175 + 0.0406201i \(0.987067\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22825.8i 1.19892i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −8804.00 −0.438241 −0.219121 0.975698i \(-0.570319\pi\)
−0.219121 + 0.975698i \(0.570319\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10241.2i 0.505670i 0.967509 + 0.252835i \(0.0813630\pi\)
−0.967509 + 0.252835i \(0.918637\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17512.0 0.850895 0.425447 0.904983i \(-0.360117\pi\)
0.425447 + 0.904983i \(0.360117\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 34793.2i 1.67716i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 8786.00 0.412004 0.206002 0.978552i \(-0.433955\pi\)
0.206002 + 0.978552i \(0.433955\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 10281.4i − 0.478393i −0.970971 0.239196i \(-0.923116\pi\)
0.970971 0.239196i \(-0.0768840\pi\)
\(774\) 0 0
\(775\) −29000.0 −1.34414
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1426.61i − 0.0634042i −0.999497 0.0317021i \(-0.989907\pi\)
0.999497 0.0317021i \(-0.0100928\pi\)
\(798\) 0 0
\(799\) −75640.0 −3.34912
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 14092.0 0.610157 0.305078 0.952327i \(-0.401317\pi\)
0.305078 + 0.952327i \(0.401317\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 42968.3i − 1.80672i −0.428888 0.903358i \(-0.641095\pi\)
0.428888 0.903358i \(-0.358905\pi\)
\(828\) 0 0
\(829\) 45254.0 1.89594 0.947971 0.318356i \(-0.103131\pi\)
0.947971 + 0.318356i \(0.103131\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 47552.2i − 1.97790i
\(834\) 0 0
\(835\) 42100.0 1.74483
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −24389.0 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 24563.2i 1.00000i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 47033.5i 1.87472i 0.348367 + 0.937358i \(0.386736\pi\)
−0.348367 + 0.937358i \(0.613264\pi\)
\(858\) 0 0
\(859\) 28204.0 1.12027 0.560133 0.828403i \(-0.310750\pi\)
0.560133 + 0.828403i \(0.310750\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26340.9i 1.03900i 0.854472 + 0.519498i \(0.173881\pi\)
−0.854472 + 0.519498i \(0.826119\pi\)
\(864\) 0 0
\(865\) −4750.00 −0.186711
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 23085.2i − 0.873871i −0.899493 0.436936i \(-0.856064\pi\)
0.899493 0.436936i \(-0.143936\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 89478.5i 3.35306i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −86180.0 −3.18654
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14512.1i 0.533036i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −21224.0 −0.761823 −0.380911 0.924612i \(-0.624390\pi\)
−0.380911 + 0.924612i \(0.624390\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −56252.0 −1.98022
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 45097.0i 1.54747i 0.633508 + 0.773736i \(0.281614\pi\)
−0.633508 + 0.773736i \(0.718386\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30289.8i 1.02957i 0.857319 + 0.514786i \(0.172129\pi\)
−0.857319 + 0.514786i \(0.827871\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 24033.0 0.806720
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 13018.4i − 0.426300i −0.977019 0.213150i \(-0.931628\pi\)
0.977019 0.213150i \(-0.0683723\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 60794.2i 1.97257i 0.165057 + 0.986284i \(0.447219\pi\)
−0.165057 + 0.986284i \(0.552781\pi\)
\(984\) 0 0
\(985\) 28550.0 0.923532
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 62368.0 1.99918 0.999589 0.0286779i \(-0.00912971\pi\)
0.999589 + 0.0286779i \(0.00912971\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 60999.9i − 1.94355i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.f.d.289.2 2
3.2 odd 2 inner 720.4.f.d.289.1 2
4.3 odd 2 45.4.b.a.19.2 yes 2
5.4 even 2 inner 720.4.f.d.289.1 2
12.11 even 2 45.4.b.a.19.1 2
15.14 odd 2 CM 720.4.f.d.289.2 2
20.3 even 4 225.4.a.k.1.2 2
20.7 even 4 225.4.a.k.1.1 2
20.19 odd 2 45.4.b.a.19.1 2
60.23 odd 4 225.4.a.k.1.1 2
60.47 odd 4 225.4.a.k.1.2 2
60.59 even 2 45.4.b.a.19.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.b.a.19.1 2 12.11 even 2
45.4.b.a.19.1 2 20.19 odd 2
45.4.b.a.19.2 yes 2 4.3 odd 2
45.4.b.a.19.2 yes 2 60.59 even 2
225.4.a.k.1.1 2 20.7 even 4
225.4.a.k.1.1 2 60.23 odd 4
225.4.a.k.1.2 2 20.3 even 4
225.4.a.k.1.2 2 60.47 odd 4
720.4.f.d.289.1 2 3.2 odd 2 inner
720.4.f.d.289.1 2 5.4 even 2 inner
720.4.f.d.289.2 2 1.1 even 1 trivial
720.4.f.d.289.2 2 15.14 odd 2 CM