Properties

Label 720.4.f.c.289.1
Level $720$
Weight $4$
Character 720.289
Analytic conductor $42.481$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,4,Mod(289,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 720.289
Dual form 720.4.f.c.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 11.0000i) q^{5} +2.00000i q^{7} +O(q^{10})\) \(q+(-2.00000 - 11.0000i) q^{5} +2.00000i q^{7} +70.0000 q^{11} -54.0000i q^{13} +22.0000i q^{17} +24.0000 q^{19} +100.000i q^{23} +(-117.000 + 44.0000i) q^{25} +216.000 q^{29} -208.000 q^{31} +(22.0000 - 4.00000i) q^{35} -254.000i q^{37} +206.000 q^{41} +292.000i q^{43} -320.000i q^{47} +339.000 q^{49} -402.000i q^{53} +(-140.000 - 770.000i) q^{55} +370.000 q^{59} -550.000 q^{61} +(-594.000 + 108.000i) q^{65} -728.000i q^{67} -540.000 q^{71} -604.000i q^{73} +140.000i q^{77} +792.000 q^{79} -404.000i q^{83} +(242.000 - 44.0000i) q^{85} -938.000 q^{89} +108.000 q^{91} +(-48.0000 - 264.000i) q^{95} +56.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{5} + 140 q^{11} + 48 q^{19} - 234 q^{25} + 432 q^{29} - 416 q^{31} + 44 q^{35} + 412 q^{41} + 678 q^{49} - 280 q^{55} + 740 q^{59} - 1100 q^{61} - 1188 q^{65} - 1080 q^{71} + 1584 q^{79} + 484 q^{85} - 1876 q^{89} + 216 q^{91} - 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 11.0000i −0.178885 0.983870i
\(6\) 0 0
\(7\) 2.00000i 0.107990i 0.998541 + 0.0539949i \(0.0171955\pi\)
−0.998541 + 0.0539949i \(0.982805\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 70.0000 1.91871 0.959354 0.282204i \(-0.0910657\pi\)
0.959354 + 0.282204i \(0.0910657\pi\)
\(12\) 0 0
\(13\) 54.0000i 1.15207i −0.817425 0.576035i \(-0.804599\pi\)
0.817425 0.576035i \(-0.195401\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 22.0000i 0.313870i 0.987609 + 0.156935i \(0.0501613\pi\)
−0.987609 + 0.156935i \(0.949839\pi\)
\(18\) 0 0
\(19\) 24.0000 0.289788 0.144894 0.989447i \(-0.453716\pi\)
0.144894 + 0.989447i \(0.453716\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 100.000i 0.906584i 0.891362 + 0.453292i \(0.149751\pi\)
−0.891362 + 0.453292i \(0.850249\pi\)
\(24\) 0 0
\(25\) −117.000 + 44.0000i −0.936000 + 0.352000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 216.000 1.38311 0.691555 0.722324i \(-0.256926\pi\)
0.691555 + 0.722324i \(0.256926\pi\)
\(30\) 0 0
\(31\) −208.000 −1.20509 −0.602547 0.798084i \(-0.705847\pi\)
−0.602547 + 0.798084i \(0.705847\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 22.0000 4.00000i 0.106248 0.0193178i
\(36\) 0 0
\(37\) 254.000i 1.12858i −0.825578 0.564288i \(-0.809151\pi\)
0.825578 0.564288i \(-0.190849\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 206.000 0.784678 0.392339 0.919821i \(-0.371666\pi\)
0.392339 + 0.919821i \(0.371666\pi\)
\(42\) 0 0
\(43\) 292.000i 1.03557i 0.855510 + 0.517786i \(0.173244\pi\)
−0.855510 + 0.517786i \(0.826756\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 320.000i 0.993123i −0.868001 0.496562i \(-0.834596\pi\)
0.868001 0.496562i \(-0.165404\pi\)
\(48\) 0 0
\(49\) 339.000 0.988338
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 402.000i 1.04187i −0.853597 0.520933i \(-0.825584\pi\)
0.853597 0.520933i \(-0.174416\pi\)
\(54\) 0 0
\(55\) −140.000 770.000i −0.343229 1.88776i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 370.000 0.816439 0.408219 0.912884i \(-0.366150\pi\)
0.408219 + 0.912884i \(0.366150\pi\)
\(60\) 0 0
\(61\) −550.000 −1.15443 −0.577215 0.816592i \(-0.695861\pi\)
−0.577215 + 0.816592i \(0.695861\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −594.000 + 108.000i −1.13349 + 0.206088i
\(66\) 0 0
\(67\) 728.000i 1.32745i −0.747975 0.663727i \(-0.768974\pi\)
0.747975 0.663727i \(-0.231026\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −540.000 −0.902623 −0.451311 0.892367i \(-0.649044\pi\)
−0.451311 + 0.892367i \(0.649044\pi\)
\(72\) 0 0
\(73\) 604.000i 0.968395i −0.874959 0.484198i \(-0.839112\pi\)
0.874959 0.484198i \(-0.160888\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 140.000i 0.207201i
\(78\) 0 0
\(79\) 792.000 1.12794 0.563968 0.825797i \(-0.309274\pi\)
0.563968 + 0.825797i \(0.309274\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 404.000i 0.534274i −0.963659 0.267137i \(-0.913922\pi\)
0.963659 0.267137i \(-0.0860777\pi\)
\(84\) 0 0
\(85\) 242.000 44.0000i 0.308807 0.0561467i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −938.000 −1.11717 −0.558583 0.829449i \(-0.688655\pi\)
−0.558583 + 0.829449i \(0.688655\pi\)
\(90\) 0 0
\(91\) 108.000 0.124412
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −48.0000 264.000i −0.0518389 0.285114i
\(96\) 0 0
\(97\) 56.0000i 0.0586179i 0.999570 + 0.0293090i \(0.00933067\pi\)
−0.999570 + 0.0293090i \(0.990669\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 592.000 0.583230 0.291615 0.956536i \(-0.405807\pi\)
0.291615 + 0.956536i \(0.405807\pi\)
\(102\) 0 0
\(103\) 62.0000i 0.0593111i 0.999560 + 0.0296555i \(0.00944104\pi\)
−0.999560 + 0.0296555i \(0.990559\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 84.0000i 0.0758933i 0.999280 + 0.0379467i \(0.0120817\pi\)
−0.999280 + 0.0379467i \(0.987918\pi\)
\(108\) 0 0
\(109\) −370.000 −0.325134 −0.162567 0.986698i \(-0.551977\pi\)
−0.162567 + 0.986698i \(0.551977\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1746.00i 1.45354i −0.686882 0.726769i \(-0.741021\pi\)
0.686882 0.726769i \(-0.258979\pi\)
\(114\) 0 0
\(115\) 1100.00 200.000i 0.891961 0.162175i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −44.0000 −0.0338947
\(120\) 0 0
\(121\) 3569.00 2.68144
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 718.000 + 1199.00i 0.513759 + 0.857935i
\(126\) 0 0
\(127\) 1630.00i 1.13889i −0.822029 0.569445i \(-0.807158\pi\)
0.822029 0.569445i \(-0.192842\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −870.000 −0.580246 −0.290123 0.956989i \(-0.593696\pi\)
−0.290123 + 0.956989i \(0.593696\pi\)
\(132\) 0 0
\(133\) 48.0000i 0.0312942i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 918.000i 0.572482i −0.958158 0.286241i \(-0.907594\pi\)
0.958158 0.286241i \(-0.0924058\pi\)
\(138\) 0 0
\(139\) −596.000 −0.363684 −0.181842 0.983328i \(-0.558206\pi\)
−0.181842 + 0.983328i \(0.558206\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3780.00i 2.21049i
\(144\) 0 0
\(145\) −432.000 2376.00i −0.247418 1.36080i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1076.00 0.591606 0.295803 0.955249i \(-0.404413\pi\)
0.295803 + 0.955249i \(0.404413\pi\)
\(150\) 0 0
\(151\) 32.0000 0.0172458 0.00862292 0.999963i \(-0.497255\pi\)
0.00862292 + 0.999963i \(0.497255\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 416.000 + 2288.00i 0.215574 + 1.18566i
\(156\) 0 0
\(157\) 2554.00i 1.29829i −0.760665 0.649145i \(-0.775127\pi\)
0.760665 0.649145i \(-0.224873\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −200.000 −0.0979019
\(162\) 0 0
\(163\) 752.000i 0.361357i 0.983542 + 0.180678i \(0.0578293\pi\)
−0.983542 + 0.180678i \(0.942171\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2700.00i 1.25109i 0.780188 + 0.625546i \(0.215124\pi\)
−0.780188 + 0.625546i \(0.784876\pi\)
\(168\) 0 0
\(169\) −719.000 −0.327264
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1334.00i 0.586255i −0.956073 0.293128i \(-0.905304\pi\)
0.956073 0.293128i \(-0.0946961\pi\)
\(174\) 0 0
\(175\) −88.0000 234.000i −0.0380124 0.101078i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1714.00 0.715700 0.357850 0.933779i \(-0.383510\pi\)
0.357850 + 0.933779i \(0.383510\pi\)
\(180\) 0 0
\(181\) −4006.00 −1.64510 −0.822551 0.568691i \(-0.807450\pi\)
−0.822551 + 0.568691i \(0.807450\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2794.00 + 508.000i −1.11037 + 0.201886i
\(186\) 0 0
\(187\) 1540.00i 0.602224i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −684.000 −0.259123 −0.129562 0.991571i \(-0.541357\pi\)
−0.129562 + 0.991571i \(0.541357\pi\)
\(192\) 0 0
\(193\) 4484.00i 1.67236i 0.548455 + 0.836180i \(0.315216\pi\)
−0.548455 + 0.836180i \(0.684784\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1058.00i 0.382636i 0.981528 + 0.191318i \(0.0612762\pi\)
−0.981528 + 0.191318i \(0.938724\pi\)
\(198\) 0 0
\(199\) −1128.00 −0.401818 −0.200909 0.979610i \(-0.564390\pi\)
−0.200909 + 0.979610i \(0.564390\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 432.000i 0.149362i
\(204\) 0 0
\(205\) −412.000 2266.00i −0.140367 0.772021i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1680.00 0.556019
\(210\) 0 0
\(211\) −780.000 −0.254490 −0.127245 0.991871i \(-0.540613\pi\)
−0.127245 + 0.991871i \(0.540613\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3212.00 584.000i 1.01887 0.185249i
\(216\) 0 0
\(217\) 416.000i 0.130138i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1188.00 0.361600
\(222\) 0 0
\(223\) 2570.00i 0.771749i −0.922551 0.385874i \(-0.873900\pi\)
0.922551 0.385874i \(-0.126100\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2836.00i 0.829216i −0.910000 0.414608i \(-0.863919\pi\)
0.910000 0.414608i \(-0.136081\pi\)
\(228\) 0 0
\(229\) 610.000 0.176026 0.0880130 0.996119i \(-0.471948\pi\)
0.0880130 + 0.996119i \(0.471948\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3514.00i 0.988025i 0.869455 + 0.494012i \(0.164470\pi\)
−0.869455 + 0.494012i \(0.835530\pi\)
\(234\) 0 0
\(235\) −3520.00 + 640.000i −0.977104 + 0.177655i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1844.00 0.499073 0.249536 0.968365i \(-0.419722\pi\)
0.249536 + 0.968365i \(0.419722\pi\)
\(240\) 0 0
\(241\) 982.000 0.262474 0.131237 0.991351i \(-0.458105\pi\)
0.131237 + 0.991351i \(0.458105\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −678.000 3729.00i −0.176799 0.972396i
\(246\) 0 0
\(247\) 1296.00i 0.333856i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3174.00 −0.798172 −0.399086 0.916914i \(-0.630672\pi\)
−0.399086 + 0.916914i \(0.630672\pi\)
\(252\) 0 0
\(253\) 7000.00i 1.73947i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1194.00i 0.289804i 0.989446 + 0.144902i \(0.0462867\pi\)
−0.989446 + 0.144902i \(0.953713\pi\)
\(258\) 0 0
\(259\) 508.000 0.121875
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 140.000i 0.0328242i −0.999865 0.0164121i \(-0.994776\pi\)
0.999865 0.0164121i \(-0.00522437\pi\)
\(264\) 0 0
\(265\) −4422.00 + 804.000i −1.02506 + 0.186375i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5256.00 1.19132 0.595658 0.803238i \(-0.296891\pi\)
0.595658 + 0.803238i \(0.296891\pi\)
\(270\) 0 0
\(271\) −544.000 −0.121940 −0.0609698 0.998140i \(-0.519419\pi\)
−0.0609698 + 0.998140i \(0.519419\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8190.00 + 3080.00i −1.79591 + 0.675385i
\(276\) 0 0
\(277\) 946.000i 0.205197i 0.994723 + 0.102599i \(0.0327157\pi\)
−0.994723 + 0.102599i \(0.967284\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1278.00 −0.271313 −0.135657 0.990756i \(-0.543314\pi\)
−0.135657 + 0.990756i \(0.543314\pi\)
\(282\) 0 0
\(283\) 7424.00i 1.55940i 0.626152 + 0.779701i \(0.284629\pi\)
−0.626152 + 0.779701i \(0.715371\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 412.000i 0.0847373i
\(288\) 0 0
\(289\) 4429.00 0.901486
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1362.00i 0.271566i −0.990739 0.135783i \(-0.956645\pi\)
0.990739 0.135783i \(-0.0433550\pi\)
\(294\) 0 0
\(295\) −740.000 4070.00i −0.146049 0.803270i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5400.00 1.04445
\(300\) 0 0
\(301\) −584.000 −0.111831
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1100.00 + 6050.00i 0.206511 + 1.13581i
\(306\) 0 0
\(307\) 7740.00i 1.43891i 0.694539 + 0.719455i \(0.255608\pi\)
−0.694539 + 0.719455i \(0.744392\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4980.00 0.908006 0.454003 0.891000i \(-0.349996\pi\)
0.454003 + 0.891000i \(0.349996\pi\)
\(312\) 0 0
\(313\) 604.000i 0.109074i −0.998512 0.0545369i \(-0.982632\pi\)
0.998512 0.0545369i \(-0.0173683\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8566.00i 1.51771i 0.651259 + 0.758856i \(0.274241\pi\)
−0.651259 + 0.758856i \(0.725759\pi\)
\(318\) 0 0
\(319\) 15120.0 2.65379
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 528.000i 0.0909557i
\(324\) 0 0
\(325\) 2376.00 + 6318.00i 0.405529 + 1.07834i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 640.000 0.107247
\(330\) 0 0
\(331\) −3472.00 −0.576551 −0.288275 0.957548i \(-0.593082\pi\)
−0.288275 + 0.957548i \(0.593082\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8008.00 + 1456.00i −1.30604 + 0.237462i
\(336\) 0 0
\(337\) 5668.00i 0.916189i 0.888904 + 0.458094i \(0.151468\pi\)
−0.888904 + 0.458094i \(0.848532\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −14560.0 −2.31222
\(342\) 0 0
\(343\) 1364.00i 0.214720i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10836.0i 1.67639i 0.545371 + 0.838194i \(0.316389\pi\)
−0.545371 + 0.838194i \(0.683611\pi\)
\(348\) 0 0
\(349\) 8990.00 1.37886 0.689432 0.724350i \(-0.257860\pi\)
0.689432 + 0.724350i \(0.257860\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5078.00i 0.765651i −0.923821 0.382825i \(-0.874951\pi\)
0.923821 0.382825i \(-0.125049\pi\)
\(354\) 0 0
\(355\) 1080.00 + 5940.00i 0.161466 + 0.888063i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3696.00 0.543363 0.271682 0.962387i \(-0.412420\pi\)
0.271682 + 0.962387i \(0.412420\pi\)
\(360\) 0 0
\(361\) −6283.00 −0.916023
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6644.00 + 1208.00i −0.952775 + 0.173232i
\(366\) 0 0
\(367\) 286.000i 0.0406787i −0.999793 0.0203393i \(-0.993525\pi\)
0.999793 0.0203393i \(-0.00647466\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 804.000 0.112511
\(372\) 0 0
\(373\) 8262.00i 1.14689i −0.819244 0.573445i \(-0.805607\pi\)
0.819244 0.573445i \(-0.194393\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11664.0i 1.59344i
\(378\) 0 0
\(379\) −2956.00 −0.400632 −0.200316 0.979731i \(-0.564197\pi\)
−0.200316 + 0.979731i \(0.564197\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5240.00i 0.699090i 0.936920 + 0.349545i \(0.113664\pi\)
−0.936920 + 0.349545i \(0.886336\pi\)
\(384\) 0 0
\(385\) 1540.00 280.000i 0.203859 0.0370653i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −884.000 −0.115220 −0.0576100 0.998339i \(-0.518348\pi\)
−0.0576100 + 0.998339i \(0.518348\pi\)
\(390\) 0 0
\(391\) −2200.00 −0.284549
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1584.00 8712.00i −0.201771 1.10974i
\(396\) 0 0
\(397\) 3394.00i 0.429068i 0.976717 + 0.214534i \(0.0688233\pi\)
−0.976717 + 0.214534i \(0.931177\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6826.00 0.850060 0.425030 0.905179i \(-0.360263\pi\)
0.425030 + 0.905179i \(0.360263\pi\)
\(402\) 0 0
\(403\) 11232.0i 1.38835i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17780.0i 2.16541i
\(408\) 0 0
\(409\) −7814.00 −0.944688 −0.472344 0.881414i \(-0.656592\pi\)
−0.472344 + 0.881414i \(0.656592\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 740.000i 0.0881671i
\(414\) 0 0
\(415\) −4444.00 + 808.000i −0.525656 + 0.0955739i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8290.00 −0.966570 −0.483285 0.875463i \(-0.660557\pi\)
−0.483285 + 0.875463i \(0.660557\pi\)
\(420\) 0 0
\(421\) 2110.00 0.244264 0.122132 0.992514i \(-0.461027\pi\)
0.122132 + 0.992514i \(0.461027\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −968.000 2574.00i −0.110482 0.293782i
\(426\) 0 0
\(427\) 1100.00i 0.124667i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12080.0 −1.35005 −0.675027 0.737793i \(-0.735868\pi\)
−0.675027 + 0.737793i \(0.735868\pi\)
\(432\) 0 0
\(433\) 16492.0i 1.83038i −0.403022 0.915190i \(-0.632040\pi\)
0.403022 0.915190i \(-0.367960\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2400.00i 0.262718i
\(438\) 0 0
\(439\) −15048.0 −1.63600 −0.817998 0.575222i \(-0.804916\pi\)
−0.817998 + 0.575222i \(0.804916\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9876.00i 1.05919i 0.848249 + 0.529597i \(0.177657\pi\)
−0.848249 + 0.529597i \(0.822343\pi\)
\(444\) 0 0
\(445\) 1876.00 + 10318.0i 0.199845 + 1.09915i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17166.0 1.80426 0.902131 0.431462i \(-0.142002\pi\)
0.902131 + 0.431462i \(0.142002\pi\)
\(450\) 0 0
\(451\) 14420.0 1.50557
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −216.000 1188.00i −0.0222555 0.122405i
\(456\) 0 0
\(457\) 14848.0i 1.51983i 0.650025 + 0.759913i \(0.274758\pi\)
−0.650025 + 0.759913i \(0.725242\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1260.00 0.127297 0.0636486 0.997972i \(-0.479726\pi\)
0.0636486 + 0.997972i \(0.479726\pi\)
\(462\) 0 0
\(463\) 11238.0i 1.12802i −0.825767 0.564011i \(-0.809258\pi\)
0.825767 0.564011i \(-0.190742\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14772.0i 1.46374i 0.681444 + 0.731870i \(0.261352\pi\)
−0.681444 + 0.731870i \(0.738648\pi\)
\(468\) 0 0
\(469\) 1456.00 0.143351
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20440.0i 1.98696i
\(474\) 0 0
\(475\) −2808.00 + 1056.00i −0.271242 + 0.102005i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6116.00 0.583397 0.291699 0.956510i \(-0.405780\pi\)
0.291699 + 0.956510i \(0.405780\pi\)
\(480\) 0 0
\(481\) −13716.0 −1.30020
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 616.000 112.000i 0.0576724 0.0104859i
\(486\) 0 0
\(487\) 15906.0i 1.48002i −0.672596 0.740010i \(-0.734821\pi\)
0.672596 0.740010i \(-0.265179\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18714.0 1.72006 0.860032 0.510241i \(-0.170444\pi\)
0.860032 + 0.510241i \(0.170444\pi\)
\(492\) 0 0
\(493\) 4752.00i 0.434116i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1080.00i 0.0974741i
\(498\) 0 0
\(499\) −4056.00 −0.363871 −0.181935 0.983310i \(-0.558236\pi\)
−0.181935 + 0.983310i \(0.558236\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6288.00i 0.557392i −0.960379 0.278696i \(-0.910098\pi\)
0.960379 0.278696i \(-0.0899021\pi\)
\(504\) 0 0
\(505\) −1184.00 6512.00i −0.104331 0.573822i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2856.00 0.248703 0.124352 0.992238i \(-0.460315\pi\)
0.124352 + 0.992238i \(0.460315\pi\)
\(510\) 0 0
\(511\) 1208.00 0.104577
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 682.000 124.000i 0.0583544 0.0106099i
\(516\) 0 0
\(517\) 22400.0i 1.90551i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17078.0 −1.43609 −0.718043 0.695999i \(-0.754962\pi\)
−0.718043 + 0.695999i \(0.754962\pi\)
\(522\) 0 0
\(523\) 8560.00i 0.715684i −0.933782 0.357842i \(-0.883513\pi\)
0.933782 0.357842i \(-0.116487\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4576.00i 0.378242i
\(528\) 0 0
\(529\) 2167.00 0.178105
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11124.0i 0.904004i
\(534\) 0 0
\(535\) 924.000 168.000i 0.0746692 0.0135762i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23730.0 1.89633
\(540\) 0 0
\(541\) 15970.0 1.26914 0.634569 0.772866i \(-0.281178\pi\)
0.634569 + 0.772866i \(0.281178\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 740.000 + 4070.00i 0.0581617 + 0.319889i
\(546\) 0 0
\(547\) 15524.0i 1.21345i 0.794911 + 0.606726i \(0.207518\pi\)
−0.794911 + 0.606726i \(0.792482\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5184.00 0.400809
\(552\) 0 0
\(553\) 1584.00i 0.121806i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6774.00i 0.515303i −0.966238 0.257651i \(-0.917051\pi\)
0.966238 0.257651i \(-0.0829486\pi\)
\(558\) 0 0
\(559\) 15768.0 1.19305
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10484.0i 0.784810i 0.919793 + 0.392405i \(0.128357\pi\)
−0.919793 + 0.392405i \(0.871643\pi\)
\(564\) 0 0
\(565\) −19206.0 + 3492.00i −1.43009 + 0.260017i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23302.0 1.71682 0.858410 0.512964i \(-0.171453\pi\)
0.858410 + 0.512964i \(0.171453\pi\)
\(570\) 0 0
\(571\) −21520.0 −1.57720 −0.788602 0.614903i \(-0.789195\pi\)
−0.788602 + 0.614903i \(0.789195\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4400.00 11700.0i −0.319118 0.848563i
\(576\) 0 0
\(577\) 3856.00i 0.278210i 0.990278 + 0.139105i \(0.0444226\pi\)
−0.990278 + 0.139105i \(0.955577\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 808.000 0.0576962
\(582\) 0 0
\(583\) 28140.0i 1.99904i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26796.0i 1.88414i −0.335418 0.942069i \(-0.608878\pi\)
0.335418 0.942069i \(-0.391122\pi\)
\(588\) 0 0
\(589\) −4992.00 −0.349222
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9870.00i 0.683495i 0.939792 + 0.341747i \(0.111019\pi\)
−0.939792 + 0.341747i \(0.888981\pi\)
\(594\) 0 0
\(595\) 88.0000 + 484.000i 0.00606327 + 0.0333480i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13296.0 0.906945 0.453472 0.891270i \(-0.350185\pi\)
0.453472 + 0.891270i \(0.350185\pi\)
\(600\) 0 0
\(601\) −9262.00 −0.628627 −0.314314 0.949319i \(-0.601774\pi\)
−0.314314 + 0.949319i \(0.601774\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7138.00 39259.0i −0.479671 2.63819i
\(606\) 0 0
\(607\) 5498.00i 0.367639i −0.982960 0.183820i \(-0.941154\pi\)
0.982960 0.183820i \(-0.0588462\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17280.0 −1.14415
\(612\) 0 0
\(613\) 394.000i 0.0259600i −0.999916 0.0129800i \(-0.995868\pi\)
0.999916 0.0129800i \(-0.00413179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7370.00i 0.480883i −0.970664 0.240442i \(-0.922708\pi\)
0.970664 0.240442i \(-0.0772923\pi\)
\(618\) 0 0
\(619\) 25316.0 1.64384 0.821919 0.569604i \(-0.192903\pi\)
0.821919 + 0.569604i \(0.192903\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1876.00i 0.120643i
\(624\) 0 0
\(625\) 11753.0 10296.0i 0.752192 0.658944i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5588.00 0.354226
\(630\) 0 0
\(631\) −2552.00 −0.161004 −0.0805020 0.996754i \(-0.525652\pi\)
−0.0805020 + 0.996754i \(0.525652\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17930.0 + 3260.00i −1.12052 + 0.203731i
\(636\) 0 0
\(637\) 18306.0i 1.13863i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8050.00 −0.496031 −0.248016 0.968756i \(-0.579778\pi\)
−0.248016 + 0.968756i \(0.579778\pi\)
\(642\) 0 0
\(643\) 19368.0i 1.18787i −0.804514 0.593934i \(-0.797574\pi\)
0.804514 0.593934i \(-0.202426\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9912.00i 0.602289i 0.953579 + 0.301144i \(0.0973686\pi\)
−0.953579 + 0.301144i \(0.902631\pi\)
\(648\) 0 0
\(649\) 25900.0 1.56651
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27986.0i 1.67715i 0.544789 + 0.838573i \(0.316610\pi\)
−0.544789 + 0.838573i \(0.683390\pi\)
\(654\) 0 0
\(655\) 1740.00 + 9570.00i 0.103798 + 0.570887i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −7562.00 −0.447001 −0.223501 0.974704i \(-0.571748\pi\)
−0.223501 + 0.974704i \(0.571748\pi\)
\(660\) 0 0
\(661\) 20234.0 1.19064 0.595319 0.803490i \(-0.297026\pi\)
0.595319 + 0.803490i \(0.297026\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 528.000 96.0000i 0.0307894 0.00559808i
\(666\) 0 0
\(667\) 21600.0i 1.25391i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −38500.0 −2.21502
\(672\) 0 0
\(673\) 25332.0i 1.45093i −0.688258 0.725466i \(-0.741624\pi\)
0.688258 0.725466i \(-0.258376\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18358.0i 1.04218i 0.853502 + 0.521090i \(0.174474\pi\)
−0.853502 + 0.521090i \(0.825526\pi\)
\(678\) 0 0
\(679\) −112.000 −0.00633014
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 124.000i 0.00694689i 0.999994 + 0.00347345i \(0.00110563\pi\)
−0.999994 + 0.00347345i \(0.998894\pi\)
\(684\) 0 0
\(685\) −10098.0 + 1836.00i −0.563248 + 0.102409i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21708.0 −1.20030
\(690\) 0 0
\(691\) 17456.0 0.961009 0.480505 0.876992i \(-0.340453\pi\)
0.480505 + 0.876992i \(0.340453\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1192.00 + 6556.00i 0.0650578 + 0.357818i
\(696\) 0 0
\(697\) 4532.00i 0.246287i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17816.0 0.959916 0.479958 0.877291i \(-0.340652\pi\)
0.479958 + 0.877291i \(0.340652\pi\)
\(702\) 0 0
\(703\) 6096.00i 0.327048i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1184.00i 0.0629829i
\(708\) 0 0
\(709\) 14298.0 0.757366 0.378683 0.925526i \(-0.376377\pi\)
0.378683 + 0.925526i \(0.376377\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 20800.0i 1.09252i
\(714\) 0 0
\(715\) −41580.0 + 7560.00i −2.17483 + 0.395424i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18440.0 0.956462 0.478231 0.878234i \(-0.341278\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(720\) 0 0
\(721\) −124.000 −0.00640499
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25272.0 + 9504.00i −1.29459 + 0.486855i
\(726\) 0 0
\(727\) 9666.00i 0.493112i −0.969129 0.246556i \(-0.920701\pi\)
0.969129 0.246556i \(-0.0792989\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6424.00 −0.325035
\(732\) 0 0
\(733\) 6094.00i 0.307076i 0.988143 + 0.153538i \(0.0490668\pi\)
−0.988143 + 0.153538i \(0.950933\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50960.0i 2.54700i
\(738\) 0 0
\(739\) 9952.00 0.495386 0.247693 0.968839i \(-0.420328\pi\)
0.247693 + 0.968839i \(0.420328\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2208.00i 0.109022i 0.998513 + 0.0545112i \(0.0173601\pi\)
−0.998513 + 0.0545112i \(0.982640\pi\)
\(744\) 0 0
\(745\) −2152.00 11836.0i −0.105830 0.582064i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −168.000 −0.00819571
\(750\) 0 0
\(751\) 9400.00 0.456739 0.228369 0.973575i \(-0.426661\pi\)
0.228369 + 0.973575i \(0.426661\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −64.0000 352.000i −0.00308503 0.0169677i
\(756\) 0 0
\(757\) 22574.0i 1.08384i −0.840430 0.541919i \(-0.817698\pi\)
0.840430 0.541919i \(-0.182302\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7278.00 −0.346685 −0.173343 0.984862i \(-0.555457\pi\)
−0.173343 + 0.984862i \(0.555457\pi\)
\(762\) 0 0
\(763\) 740.000i 0.0351111i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19980.0i 0.940595i
\(768\) 0 0
\(769\) 16542.0 0.775708 0.387854 0.921721i \(-0.373216\pi\)
0.387854 + 0.921721i \(0.373216\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28926.0i 1.34592i −0.739679 0.672960i \(-0.765023\pi\)
0.739679 0.672960i \(-0.234977\pi\)
\(774\) 0 0
\(775\) 24336.0 9152.00i 1.12797 0.424193i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4944.00 0.227390
\(780\) 0 0
\(781\) −37800.0 −1.73187
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −28094.0 + 5108.00i −1.27735 + 0.232245i
\(786\) 0 0
\(787\) 20608.0i 0.933413i −0.884412 0.466706i \(-0.845440\pi\)
0.884412 0.466706i \(-0.154560\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3492.00 0.156967
\(792\) 0 0
\(793\) 29700.0i 1.32998i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0