# Properties

 Label 720.4.a.v.1.1 Level $720$ Weight $4$ Character 720.1 Self dual yes Analytic conductor $42.481$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [720,4,Mod(1,720)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(720, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("720.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$720 = 2^{4} \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 720.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$42.4813752041$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 120) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 720.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+5.00000 q^{5} -4.00000 q^{7} +O(q^{10})$$ $$q+5.00000 q^{5} -4.00000 q^{7} +72.0000 q^{11} -6.00000 q^{13} -38.0000 q^{17} -52.0000 q^{19} +152.000 q^{23} +25.0000 q^{25} +78.0000 q^{29} -120.000 q^{31} -20.0000 q^{35} -150.000 q^{37} -362.000 q^{41} +484.000 q^{43} +280.000 q^{47} -327.000 q^{49} +670.000 q^{53} +360.000 q^{55} +696.000 q^{59} +222.000 q^{61} -30.0000 q^{65} +4.00000 q^{67} +96.0000 q^{71} +178.000 q^{73} -288.000 q^{77} +632.000 q^{79} -612.000 q^{83} -190.000 q^{85} -994.000 q^{89} +24.0000 q^{91} -260.000 q^{95} +1634.00 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 5.00000 0.447214
$$6$$ 0 0
$$7$$ −4.00000 −0.215980 −0.107990 0.994152i $$-0.534441\pi$$
−0.107990 + 0.994152i $$0.534441\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 72.0000 1.97353 0.986764 0.162160i $$-0.0518462\pi$$
0.986764 + 0.162160i $$0.0518462\pi$$
$$12$$ 0 0
$$13$$ −6.00000 −0.128008 −0.0640039 0.997950i $$-0.520387\pi$$
−0.0640039 + 0.997950i $$0.520387\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −38.0000 −0.542138 −0.271069 0.962560i $$-0.587377\pi$$
−0.271069 + 0.962560i $$0.587377\pi$$
$$18$$ 0 0
$$19$$ −52.0000 −0.627875 −0.313937 0.949444i $$-0.601648\pi$$
−0.313937 + 0.949444i $$0.601648\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 152.000 1.37801 0.689004 0.724757i $$-0.258048\pi$$
0.689004 + 0.724757i $$0.258048\pi$$
$$24$$ 0 0
$$25$$ 25.0000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 78.0000 0.499456 0.249728 0.968316i $$-0.419659\pi$$
0.249728 + 0.968316i $$0.419659\pi$$
$$30$$ 0 0
$$31$$ −120.000 −0.695246 −0.347623 0.937634i $$-0.613011\pi$$
−0.347623 + 0.937634i $$0.613011\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ −20.0000 −0.0965891
$$36$$ 0 0
$$37$$ −150.000 −0.666482 −0.333241 0.942842i $$-0.608142\pi$$
−0.333241 + 0.942842i $$0.608142\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −362.000 −1.37890 −0.689450 0.724333i $$-0.742148\pi$$
−0.689450 + 0.724333i $$0.742148\pi$$
$$42$$ 0 0
$$43$$ 484.000 1.71650 0.858248 0.513236i $$-0.171553\pi$$
0.858248 + 0.513236i $$0.171553\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 280.000 0.868983 0.434491 0.900676i $$-0.356928\pi$$
0.434491 + 0.900676i $$0.356928\pi$$
$$48$$ 0 0
$$49$$ −327.000 −0.953353
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 670.000 1.73644 0.868222 0.496175i $$-0.165263\pi$$
0.868222 + 0.496175i $$0.165263\pi$$
$$54$$ 0 0
$$55$$ 360.000 0.882589
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 696.000 1.53579 0.767894 0.640577i $$-0.221305\pi$$
0.767894 + 0.640577i $$0.221305\pi$$
$$60$$ 0 0
$$61$$ 222.000 0.465970 0.232985 0.972480i $$-0.425151\pi$$
0.232985 + 0.972480i $$0.425151\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −30.0000 −0.0572468
$$66$$ 0 0
$$67$$ 4.00000 0.00729370 0.00364685 0.999993i $$-0.498839\pi$$
0.00364685 + 0.999993i $$0.498839\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 96.0000 0.160466 0.0802331 0.996776i $$-0.474434\pi$$
0.0802331 + 0.996776i $$0.474434\pi$$
$$72$$ 0 0
$$73$$ 178.000 0.285388 0.142694 0.989767i $$-0.454424\pi$$
0.142694 + 0.989767i $$0.454424\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −288.000 −0.426242
$$78$$ 0 0
$$79$$ 632.000 0.900070 0.450035 0.893011i $$-0.351411\pi$$
0.450035 + 0.893011i $$0.351411\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −612.000 −0.809346 −0.404673 0.914461i $$-0.632615\pi$$
−0.404673 + 0.914461i $$0.632615\pi$$
$$84$$ 0 0
$$85$$ −190.000 −0.242452
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −994.000 −1.18386 −0.591931 0.805988i $$-0.701634\pi$$
−0.591931 + 0.805988i $$0.701634\pi$$
$$90$$ 0 0
$$91$$ 24.0000 0.0276471
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −260.000 −0.280794
$$96$$ 0 0
$$97$$ 1634.00 1.71039 0.855194 0.518309i $$-0.173438\pi$$
0.855194 + 0.518309i $$0.173438\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −890.000 −0.876815 −0.438407 0.898776i $$-0.644457\pi$$
−0.438407 + 0.898776i $$0.644457\pi$$
$$102$$ 0 0
$$103$$ 524.000 0.501274 0.250637 0.968081i $$-0.419360\pi$$
0.250637 + 0.968081i $$0.419360\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 932.000 0.842055 0.421027 0.907048i $$-0.361670\pi$$
0.421027 + 0.907048i $$0.361670\pi$$
$$108$$ 0 0
$$109$$ 446.000 0.391918 0.195959 0.980612i $$-0.437218\pi$$
0.195959 + 0.980612i $$0.437218\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 786.000 0.654342 0.327171 0.944965i $$-0.393905\pi$$
0.327171 + 0.944965i $$0.393905\pi$$
$$114$$ 0 0
$$115$$ 760.000 0.616264
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 152.000 0.117091
$$120$$ 0 0
$$121$$ 3853.00 2.89482
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 125.000 0.0894427
$$126$$ 0 0
$$127$$ −716.000 −0.500273 −0.250137 0.968211i $$-0.580476\pi$$
−0.250137 + 0.968211i $$0.580476\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −808.000 −0.538895 −0.269448 0.963015i $$-0.586841\pi$$
−0.269448 + 0.963015i $$0.586841\pi$$
$$132$$ 0 0
$$133$$ 208.000 0.135608
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 1770.00 1.10381 0.551903 0.833909i $$-0.313902\pi$$
0.551903 + 0.833909i $$0.313902\pi$$
$$138$$ 0 0
$$139$$ 924.000 0.563832 0.281916 0.959439i $$-0.409030\pi$$
0.281916 + 0.959439i $$0.409030\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −432.000 −0.252627
$$144$$ 0 0
$$145$$ 390.000 0.223364
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 3198.00 1.75832 0.879162 0.476522i $$-0.158103\pi$$
0.879162 + 0.476522i $$0.158103\pi$$
$$150$$ 0 0
$$151$$ 3384.00 1.82375 0.911874 0.410470i $$-0.134635\pi$$
0.911874 + 0.410470i $$0.134635\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −600.000 −0.310924
$$156$$ 0 0
$$157$$ −3302.00 −1.67852 −0.839262 0.543727i $$-0.817013\pi$$
−0.839262 + 0.543727i $$0.817013\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ −608.000 −0.297622
$$162$$ 0 0
$$163$$ −2252.00 −1.08215 −0.541074 0.840975i $$-0.681982\pi$$
−0.541074 + 0.840975i $$0.681982\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −184.000 −0.0852596 −0.0426298 0.999091i $$-0.513574\pi$$
−0.0426298 + 0.999091i $$0.513574\pi$$
$$168$$ 0 0
$$169$$ −2161.00 −0.983614
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 2646.00 1.16284 0.581421 0.813603i $$-0.302497\pi$$
0.581421 + 0.813603i $$0.302497\pi$$
$$174$$ 0 0
$$175$$ −100.000 −0.0431959
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −608.000 −0.253877 −0.126939 0.991911i $$-0.540515\pi$$
−0.126939 + 0.991911i $$0.540515\pi$$
$$180$$ 0 0
$$181$$ 2246.00 0.922342 0.461171 0.887311i $$-0.347430\pi$$
0.461171 + 0.887311i $$0.347430\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −750.000 −0.298060
$$186$$ 0 0
$$187$$ −2736.00 −1.06993
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −3848.00 −1.45776 −0.728878 0.684643i $$-0.759958\pi$$
−0.728878 + 0.684643i $$0.759958\pi$$
$$192$$ 0 0
$$193$$ 2058.00 0.767555 0.383777 0.923426i $$-0.374623\pi$$
0.383777 + 0.923426i $$0.374623\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 3838.00 1.38805 0.694026 0.719950i $$-0.255835\pi$$
0.694026 + 0.719950i $$0.255835\pi$$
$$198$$ 0 0
$$199$$ 1992.00 0.709594 0.354797 0.934943i $$-0.384550\pi$$
0.354797 + 0.934943i $$0.384550\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ −312.000 −0.107872
$$204$$ 0 0
$$205$$ −1810.00 −0.616663
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −3744.00 −1.23913
$$210$$ 0 0
$$211$$ −4764.00 −1.55435 −0.777174 0.629286i $$-0.783347\pi$$
−0.777174 + 0.629286i $$0.783347\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 2420.00 0.767640
$$216$$ 0 0
$$217$$ 480.000 0.150159
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 228.000 0.0693979
$$222$$ 0 0
$$223$$ −4092.00 −1.22879 −0.614396 0.788998i $$-0.710600\pi$$
−0.614396 + 0.788998i $$0.710600\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 468.000 0.136838 0.0684191 0.997657i $$-0.478205\pi$$
0.0684191 + 0.997657i $$0.478205\pi$$
$$228$$ 0 0
$$229$$ −5586.00 −1.61194 −0.805968 0.591959i $$-0.798355\pi$$
−0.805968 + 0.591959i $$0.798355\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 1058.00 0.297476 0.148738 0.988877i $$-0.452479\pi$$
0.148738 + 0.988877i $$0.452479\pi$$
$$234$$ 0 0
$$235$$ 1400.00 0.388621
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 6840.00 1.85123 0.925613 0.378472i $$-0.123550\pi$$
0.925613 + 0.378472i $$0.123550\pi$$
$$240$$ 0 0
$$241$$ −6430.00 −1.71864 −0.859321 0.511437i $$-0.829113\pi$$
−0.859321 + 0.511437i $$0.829113\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ −1635.00 −0.426352
$$246$$ 0 0
$$247$$ 312.000 0.0803728
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −6352.00 −1.59735 −0.798675 0.601763i $$-0.794465\pi$$
−0.798675 + 0.601763i $$0.794465\pi$$
$$252$$ 0 0
$$253$$ 10944.0 2.71954
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −1422.00 −0.345144 −0.172572 0.984997i $$-0.555208\pi$$
−0.172572 + 0.984997i $$0.555208\pi$$
$$258$$ 0 0
$$259$$ 600.000 0.143947
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 7224.00 1.69373 0.846865 0.531808i $$-0.178487\pi$$
0.846865 + 0.531808i $$0.178487\pi$$
$$264$$ 0 0
$$265$$ 3350.00 0.776562
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −3186.00 −0.722133 −0.361067 0.932540i $$-0.617587\pi$$
−0.361067 + 0.932540i $$0.617587\pi$$
$$270$$ 0 0
$$271$$ 256.000 0.0573834 0.0286917 0.999588i $$-0.490866\pi$$
0.0286917 + 0.999588i $$0.490866\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 1800.00 0.394706
$$276$$ 0 0
$$277$$ −5942.00 −1.28888 −0.644441 0.764654i $$-0.722910\pi$$
−0.644441 + 0.764654i $$0.722910\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −3202.00 −0.679770 −0.339885 0.940467i $$-0.610388\pi$$
−0.339885 + 0.940467i $$0.610388\pi$$
$$282$$ 0 0
$$283$$ −3940.00 −0.827593 −0.413796 0.910370i $$-0.635797\pi$$
−0.413796 + 0.910370i $$0.635797\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 1448.00 0.297814
$$288$$ 0 0
$$289$$ −3469.00 −0.706086
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −1826.00 −0.364082 −0.182041 0.983291i $$-0.558270\pi$$
−0.182041 + 0.983291i $$0.558270\pi$$
$$294$$ 0 0
$$295$$ 3480.00 0.686825
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −912.000 −0.176396
$$300$$ 0 0
$$301$$ −1936.00 −0.370728
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 1110.00 0.208388
$$306$$ 0 0
$$307$$ −6580.00 −1.22326 −0.611629 0.791144i $$-0.709486\pi$$
−0.611629 + 0.791144i $$0.709486\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −5728.00 −1.04439 −0.522195 0.852826i $$-0.674887\pi$$
−0.522195 + 0.852826i $$0.674887\pi$$
$$312$$ 0 0
$$313$$ −1742.00 −0.314580 −0.157290 0.987552i $$-0.550276\pi$$
−0.157290 + 0.987552i $$0.550276\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −8746.00 −1.54960 −0.774802 0.632204i $$-0.782150\pi$$
−0.774802 + 0.632204i $$0.782150\pi$$
$$318$$ 0 0
$$319$$ 5616.00 0.985692
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 1976.00 0.340395
$$324$$ 0 0
$$325$$ −150.000 −0.0256015
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −1120.00 −0.187683
$$330$$ 0 0
$$331$$ 2564.00 0.425771 0.212885 0.977077i $$-0.431714\pi$$
0.212885 + 0.977077i $$0.431714\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 20.0000 0.00326184
$$336$$ 0 0
$$337$$ −4166.00 −0.673402 −0.336701 0.941612i $$-0.609311\pi$$
−0.336701 + 0.941612i $$0.609311\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −8640.00 −1.37209
$$342$$ 0 0
$$343$$ 2680.00 0.421885
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −9444.00 −1.46104 −0.730519 0.682892i $$-0.760722\pi$$
−0.730519 + 0.682892i $$0.760722\pi$$
$$348$$ 0 0
$$349$$ −9218.00 −1.41383 −0.706917 0.707296i $$-0.749915\pi$$
−0.706917 + 0.707296i $$0.749915\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 4698.00 0.708355 0.354177 0.935178i $$-0.384761\pi$$
0.354177 + 0.935178i $$0.384761\pi$$
$$354$$ 0 0
$$355$$ 480.000 0.0717627
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −6056.00 −0.890316 −0.445158 0.895452i $$-0.646852\pi$$
−0.445158 + 0.895452i $$0.646852\pi$$
$$360$$ 0 0
$$361$$ −4155.00 −0.605773
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 890.000 0.127629
$$366$$ 0 0
$$367$$ 8228.00 1.17029 0.585147 0.810927i $$-0.301037\pi$$
0.585147 + 0.810927i $$0.301037\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −2680.00 −0.375037
$$372$$ 0 0
$$373$$ 5954.00 0.826505 0.413253 0.910616i $$-0.364393\pi$$
0.413253 + 0.910616i $$0.364393\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −468.000 −0.0639343
$$378$$ 0 0
$$379$$ −5284.00 −0.716150 −0.358075 0.933693i $$-0.616567\pi$$
−0.358075 + 0.933693i $$0.616567\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 9832.00 1.31173 0.655864 0.754879i $$-0.272305\pi$$
0.655864 + 0.754879i $$0.272305\pi$$
$$384$$ 0 0
$$385$$ −1440.00 −0.190621
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 222.000 0.0289353 0.0144677 0.999895i $$-0.495395\pi$$
0.0144677 + 0.999895i $$0.495395\pi$$
$$390$$ 0 0
$$391$$ −5776.00 −0.747071
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 3160.00 0.402524
$$396$$ 0 0
$$397$$ 12098.0 1.52942 0.764712 0.644372i $$-0.222881\pi$$
0.764712 + 0.644372i $$0.222881\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 5958.00 0.741966 0.370983 0.928640i $$-0.379021\pi$$
0.370983 + 0.928640i $$0.379021\pi$$
$$402$$ 0 0
$$403$$ 720.000 0.0889969
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −10800.0 −1.31532
$$408$$ 0 0
$$409$$ 1930.00 0.233331 0.116665 0.993171i $$-0.462779\pi$$
0.116665 + 0.993171i $$0.462779\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −2784.00 −0.331699
$$414$$ 0 0
$$415$$ −3060.00 −0.361951
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 4744.00 0.553125 0.276563 0.960996i $$-0.410805\pi$$
0.276563 + 0.960996i $$0.410805\pi$$
$$420$$ 0 0
$$421$$ 1614.00 0.186845 0.0934223 0.995627i $$-0.470219\pi$$
0.0934223 + 0.995627i $$0.470219\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −950.000 −0.108428
$$426$$ 0 0
$$427$$ −888.000 −0.100640
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 9296.00 1.03892 0.519458 0.854496i $$-0.326134\pi$$
0.519458 + 0.854496i $$0.326134\pi$$
$$432$$ 0 0
$$433$$ −3494.00 −0.387785 −0.193893 0.981023i $$-0.562111\pi$$
−0.193893 + 0.981023i $$0.562111\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −7904.00 −0.865216
$$438$$ 0 0
$$439$$ 12584.0 1.36811 0.684056 0.729429i $$-0.260214\pi$$
0.684056 + 0.729429i $$0.260214\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −12852.0 −1.37837 −0.689184 0.724586i $$-0.742031\pi$$
−0.689184 + 0.724586i $$0.742031\pi$$
$$444$$ 0 0
$$445$$ −4970.00 −0.529440
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −14458.0 −1.51963 −0.759816 0.650138i $$-0.774711\pi$$
−0.759816 + 0.650138i $$0.774711\pi$$
$$450$$ 0 0
$$451$$ −26064.0 −2.72130
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 120.000 0.0123641
$$456$$ 0 0
$$457$$ −4310.00 −0.441167 −0.220583 0.975368i $$-0.570796\pi$$
−0.220583 + 0.975368i $$0.570796\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −5338.00 −0.539296 −0.269648 0.962959i $$-0.586907\pi$$
−0.269648 + 0.962959i $$0.586907\pi$$
$$462$$ 0 0
$$463$$ −1156.00 −0.116034 −0.0580171 0.998316i $$-0.518478\pi$$
−0.0580171 + 0.998316i $$0.518478\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 5948.00 0.589380 0.294690 0.955593i $$-0.404784\pi$$
0.294690 + 0.955593i $$0.404784\pi$$
$$468$$ 0 0
$$469$$ −16.0000 −0.00157529
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 34848.0 3.38755
$$474$$ 0 0
$$475$$ −1300.00 −0.125575
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 6888.00 0.657037 0.328519 0.944498i $$-0.393451\pi$$
0.328519 + 0.944498i $$0.393451\pi$$
$$480$$ 0 0
$$481$$ 900.000 0.0853149
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 8170.00 0.764908
$$486$$ 0 0
$$487$$ −2892.00 −0.269095 −0.134547 0.990907i $$-0.542958\pi$$
−0.134547 + 0.990907i $$0.542958\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 4096.00 0.376476 0.188238 0.982123i $$-0.439722\pi$$
0.188238 + 0.982123i $$0.439722\pi$$
$$492$$ 0 0
$$493$$ −2964.00 −0.270775
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −384.000 −0.0346575
$$498$$ 0 0
$$499$$ −11060.0 −0.992212 −0.496106 0.868262i $$-0.665237\pi$$
−0.496106 + 0.868262i $$0.665237\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −9648.00 −0.855235 −0.427617 0.903960i $$-0.640647\pi$$
−0.427617 + 0.903960i $$0.640647\pi$$
$$504$$ 0 0
$$505$$ −4450.00 −0.392124
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 10062.0 0.876209 0.438104 0.898924i $$-0.355650\pi$$
0.438104 + 0.898924i $$0.355650\pi$$
$$510$$ 0 0
$$511$$ −712.000 −0.0616380
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 2620.00 0.224177
$$516$$ 0 0
$$517$$ 20160.0 1.71496
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 7966.00 0.669859 0.334930 0.942243i $$-0.391287\pi$$
0.334930 + 0.942243i $$0.391287\pi$$
$$522$$ 0 0
$$523$$ −7668.00 −0.641106 −0.320553 0.947231i $$-0.603869\pi$$
−0.320553 + 0.947231i $$0.603869\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 4560.00 0.376920
$$528$$ 0 0
$$529$$ 10937.0 0.898907
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 2172.00 0.176510
$$534$$ 0 0
$$535$$ 4660.00 0.376578
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −23544.0 −1.88147
$$540$$ 0 0
$$541$$ 6590.00 0.523708 0.261854 0.965107i $$-0.415666\pi$$
0.261854 + 0.965107i $$0.415666\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 2230.00 0.175271
$$546$$ 0 0
$$547$$ 4700.00 0.367381 0.183691 0.982984i $$-0.441196\pi$$
0.183691 + 0.982984i $$0.441196\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −4056.00 −0.313596
$$552$$ 0 0
$$553$$ −2528.00 −0.194397
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 15766.0 1.19933 0.599665 0.800251i $$-0.295300\pi$$
0.599665 + 0.800251i $$0.295300\pi$$
$$558$$ 0 0
$$559$$ −2904.00 −0.219725
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 22788.0 1.70586 0.852930 0.522025i $$-0.174823\pi$$
0.852930 + 0.522025i $$0.174823\pi$$
$$564$$ 0 0
$$565$$ 3930.00 0.292631
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 3358.00 0.247407 0.123704 0.992319i $$-0.460523\pi$$
0.123704 + 0.992319i $$0.460523\pi$$
$$570$$ 0 0
$$571$$ 11444.0 0.838733 0.419366 0.907817i $$-0.362252\pi$$
0.419366 + 0.907817i $$0.362252\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 3800.00 0.275602
$$576$$ 0 0
$$577$$ −10622.0 −0.766377 −0.383189 0.923670i $$-0.625174\pi$$
−0.383189 + 0.923670i $$0.625174\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 2448.00 0.174802
$$582$$ 0 0
$$583$$ 48240.0 3.42692
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −6588.00 −0.463230 −0.231615 0.972808i $$-0.574401\pi$$
−0.231615 + 0.972808i $$0.574401\pi$$
$$588$$ 0 0
$$589$$ 6240.00 0.436528
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 11362.0 0.786815 0.393408 0.919364i $$-0.371296\pi$$
0.393408 + 0.919364i $$0.371296\pi$$
$$594$$ 0 0
$$595$$ 760.000 0.0523646
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 1624.00 0.110776 0.0553880 0.998465i $$-0.482360\pi$$
0.0553880 + 0.998465i $$0.482360\pi$$
$$600$$ 0 0
$$601$$ −14950.0 −1.01468 −0.507340 0.861746i $$-0.669371\pi$$
−0.507340 + 0.861746i $$0.669371\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 19265.0 1.29460
$$606$$ 0 0
$$607$$ −8244.00 −0.551258 −0.275629 0.961264i $$-0.588886\pi$$
−0.275629 + 0.961264i $$0.588886\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −1680.00 −0.111237
$$612$$ 0 0
$$613$$ 6698.00 0.441321 0.220660 0.975351i $$-0.429179\pi$$
0.220660 + 0.975351i $$0.429179\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −22670.0 −1.47919 −0.739595 0.673053i $$-0.764983\pi$$
−0.739595 + 0.673053i $$0.764983\pi$$
$$618$$ 0 0
$$619$$ 10060.0 0.653224 0.326612 0.945159i $$-0.394093\pi$$
0.326612 + 0.945159i $$0.394093\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 3976.00 0.255690
$$624$$ 0 0
$$625$$ 625.000 0.0400000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 5700.00 0.361326
$$630$$ 0 0
$$631$$ −10240.0 −0.646035 −0.323017 0.946393i $$-0.604697\pi$$
−0.323017 + 0.946393i $$0.604697\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −3580.00 −0.223729
$$636$$ 0 0
$$637$$ 1962.00 0.122037
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −13218.0 −0.814477 −0.407238 0.913322i $$-0.633508\pi$$
−0.407238 + 0.913322i $$0.633508\pi$$
$$642$$ 0 0
$$643$$ 23412.0 1.43589 0.717946 0.696098i $$-0.245082\pi$$
0.717946 + 0.696098i $$0.245082\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −15264.0 −0.927496 −0.463748 0.885967i $$-0.653496\pi$$
−0.463748 + 0.885967i $$0.653496\pi$$
$$648$$ 0 0
$$649$$ 50112.0 3.03092
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −1482.00 −0.0888134 −0.0444067 0.999014i $$-0.514140\pi$$
−0.0444067 + 0.999014i $$0.514140\pi$$
$$654$$ 0 0
$$655$$ −4040.00 −0.241001
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −18920.0 −1.11839 −0.559195 0.829036i $$-0.688890\pi$$
−0.559195 + 0.829036i $$0.688890\pi$$
$$660$$ 0 0
$$661$$ −24218.0 −1.42507 −0.712535 0.701637i $$-0.752453\pi$$
−0.712535 + 0.701637i $$0.752453\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 1040.00 0.0606458
$$666$$ 0 0
$$667$$ 11856.0 0.688255
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 15984.0 0.919606
$$672$$ 0 0
$$673$$ 890.000 0.0509762 0.0254881 0.999675i $$-0.491886\pi$$
0.0254881 + 0.999675i $$0.491886\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −29250.0 −1.66052 −0.830258 0.557380i $$-0.811807\pi$$
−0.830258 + 0.557380i $$0.811807\pi$$
$$678$$ 0 0
$$679$$ −6536.00 −0.369409
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 14580.0 0.816820 0.408410 0.912799i $$-0.366083\pi$$
0.408410 + 0.912799i $$0.366083\pi$$
$$684$$ 0 0
$$685$$ 8850.00 0.493637
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −4020.00 −0.222278
$$690$$ 0 0
$$691$$ −23668.0 −1.30300 −0.651500 0.758649i $$-0.725860\pi$$
−0.651500 + 0.758649i $$0.725860\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 4620.00 0.252153
$$696$$ 0 0
$$697$$ 13756.0 0.747555
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −32402.0 −1.74580 −0.872901 0.487898i $$-0.837764\pi$$
−0.872901 + 0.487898i $$0.837764\pi$$
$$702$$ 0 0
$$703$$ 7800.00 0.418467
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 3560.00 0.189374
$$708$$ 0 0
$$709$$ −30626.0 −1.62226 −0.811131 0.584865i $$-0.801148\pi$$
−0.811131 + 0.584865i $$0.801148\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ −18240.0 −0.958055
$$714$$ 0 0
$$715$$ −2160.00 −0.112978
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 13440.0 0.697117 0.348559 0.937287i $$-0.386671\pi$$
0.348559 + 0.937287i $$0.386671\pi$$
$$720$$ 0 0
$$721$$ −2096.00 −0.108265
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 1950.00 0.0998913
$$726$$ 0 0
$$727$$ 24820.0 1.26619 0.633097 0.774073i $$-0.281783\pi$$
0.633097 + 0.774073i $$0.281783\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −18392.0 −0.930578
$$732$$ 0 0
$$733$$ 21986.0 1.10787 0.553937 0.832559i $$-0.313125\pi$$
0.553937 + 0.832559i $$0.313125\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 288.000 0.0143943
$$738$$ 0 0
$$739$$ −4420.00 −0.220017 −0.110008 0.993931i $$-0.535088\pi$$
−0.110008 + 0.993931i $$0.535088\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 34560.0 1.70644 0.853219 0.521553i $$-0.174647\pi$$
0.853219 + 0.521553i $$0.174647\pi$$
$$744$$ 0 0
$$745$$ 15990.0 0.786347
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −3728.00 −0.181867
$$750$$ 0 0
$$751$$ 24792.0 1.20462 0.602312 0.798261i $$-0.294246\pi$$
0.602312 + 0.798261i $$0.294246\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 16920.0 0.815605
$$756$$ 0 0
$$757$$ −2166.00 −0.103996 −0.0519978 0.998647i $$-0.516559\pi$$
−0.0519978 + 0.998647i $$0.516559\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 10622.0 0.505975 0.252988 0.967470i $$-0.418587\pi$$
0.252988 + 0.967470i $$0.418587\pi$$
$$762$$ 0 0
$$763$$ −1784.00 −0.0846463
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −4176.00 −0.196593
$$768$$ 0 0
$$769$$ 29826.0 1.39864 0.699319 0.714809i $$-0.253487\pi$$
0.699319 + 0.714809i $$0.253487\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −6386.00 −0.297139 −0.148570 0.988902i $$-0.547467\pi$$
−0.148570 + 0.988902i $$0.547467\pi$$
$$774$$ 0 0
$$775$$ −3000.00 −0.139049
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 18824.0 0.865776
$$780$$ 0 0
$$781$$ 6912.00 0.316685
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −16510.0 −0.750659
$$786$$ 0 0
$$787$$ −3516.00 −0.159253 −0.0796263 0.996825i $$-0.525373\pi$$
−0.0796263 + 0.996825i $$0.525373\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −3144.00 −0.141325
$$792$$ 0 0
$$793$$ −1332.00 −0.0596478
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 25030.0 1.11243 0.556216 0.831038i $$-0.312253\pi$$
0.556216 + 0.831038i $$0.312253\pi$$
$$798$$ 0 0
$$799$$ −10640.0 −0.471109
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 12816.0 0.563221
$$804$$ 0 0
$$805$$ −3040.00 −0.133101
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −7962.00 −0.346019 −0.173009 0.984920i $$-0.555349\pi$$
−0.173009 + 0.984920i $$0.555349\pi$$
$$810$$ 0 0
$$811$$ 34668.0 1.50106 0.750529 0.660837i $$-0.229799\pi$$
0.750529 + 0.660837i $$0.229799\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −11260.0 −0.483952
$$816$$ 0 0
$$817$$ −25168.0 −1.07774
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −250.000 −0.0106274 −0.00531368 0.999986i $$-0.501691\pi$$
−0.00531368 + 0.999986i $$0.501691\pi$$
$$822$$ 0 0
$$823$$ 6388.00 0.270561 0.135280 0.990807i $$-0.456806\pi$$
0.135280 + 0.990807i $$0.456806\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 3932.00 0.165331 0.0826657 0.996577i $$-0.473657\pi$$
0.0826657 + 0.996577i $$0.473657\pi$$
$$828$$ 0 0
$$829$$ −25906.0 −1.08535 −0.542673 0.839944i $$-0.682588\pi$$
−0.542673 + 0.839944i $$0.682588\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 12426.0 0.516849
$$834$$ 0 0
$$835$$ −920.000 −0.0381292
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ −9944.00 −0.409184 −0.204592 0.978847i $$-0.565587\pi$$
−0.204592 + 0.978847i $$0.565587\pi$$
$$840$$ 0 0
$$841$$ −18305.0 −0.750543
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ −10805.0 −0.439886
$$846$$ 0 0
$$847$$ −15412.0 −0.625221
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −22800.0 −0.918418
$$852$$ 0 0
$$853$$ −14630.0 −0.587247 −0.293623 0.955921i $$-0.594861\pi$$
−0.293623 + 0.955921i $$0.594861\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −478.000 −0.0190527 −0.00952635 0.999955i $$-0.503032\pi$$
−0.00952635 + 0.999955i $$0.503032\pi$$
$$858$$ 0 0
$$859$$ −24132.0 −0.958525 −0.479263 0.877672i $$-0.659096\pi$$
−0.479263 + 0.877672i $$0.659096\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 15776.0 0.622273 0.311136 0.950365i $$-0.399290\pi$$
0.311136 + 0.950365i $$0.399290\pi$$
$$864$$ 0 0
$$865$$ 13230.0 0.520039
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 45504.0 1.77631
$$870$$ 0 0
$$871$$ −24.0000 −0.000933650 0
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ −500.000 −0.0193178
$$876$$ 0 0
$$877$$ −33542.0 −1.29149 −0.645743 0.763555i $$-0.723452\pi$$
−0.645743 + 0.763555i $$0.723452\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −22858.0 −0.874127 −0.437063 0.899431i $$-0.643981\pi$$
−0.437063 + 0.899431i $$0.643981\pi$$
$$882$$ 0 0
$$883$$ −2764.00 −0.105341 −0.0526704 0.998612i $$-0.516773\pi$$
−0.0526704 + 0.998612i $$0.516773\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 6216.00 0.235302 0.117651 0.993055i $$-0.462464\pi$$
0.117651 + 0.993055i $$0.462464\pi$$
$$888$$ 0 0
$$889$$ 2864.00 0.108049
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −14560.0 −0.545612
$$894$$ 0 0
$$895$$ −3040.00 −0.113537
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ −9360.00 −0.347245
$$900$$ 0 0
$$901$$ −25460.0 −0.941394
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 11230.0 0.412484
$$906$$ 0 0
$$907$$ 18884.0 0.691326 0.345663 0.938359i $$-0.387654\pi$$
0.345663 + 0.938359i $$0.387654\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −15232.0 −0.553961 −0.276981 0.960876i $$-0.589334\pi$$
−0.276981 + 0.960876i $$0.589334\pi$$
$$912$$ 0 0
$$913$$ −44064.0 −1.59727
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 3232.00 0.116390
$$918$$ 0 0
$$919$$ −7744.00 −0.277966 −0.138983 0.990295i $$-0.544383\pi$$
−0.138983 + 0.990295i $$0.544383\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −576.000 −0.0205409
$$924$$ 0 0
$$925$$ −3750.00 −0.133296
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −22266.0 −0.786355 −0.393177 0.919463i $$-0.628624\pi$$
−0.393177 + 0.919463i $$0.628624\pi$$
$$930$$ 0 0
$$931$$ 17004.0 0.598586
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ −13680.0 −0.478485
$$936$$ 0 0
$$937$$ 16202.0 0.564884 0.282442 0.959284i $$-0.408856\pi$$
0.282442 + 0.959284i $$0.408856\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 53494.0 1.85319 0.926596 0.376057i $$-0.122720\pi$$
0.926596 + 0.376057i $$0.122720\pi$$
$$942$$ 0 0
$$943$$ −55024.0 −1.90014
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −2332.00 −0.0800209 −0.0400105 0.999199i $$-0.512739\pi$$
−0.0400105 + 0.999199i $$0.512739\pi$$
$$948$$ 0 0
$$949$$ −1068.00 −0.0365319
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −15414.0 −0.523933 −0.261967 0.965077i $$-0.584371\pi$$
−0.261967 + 0.965077i $$0.584371\pi$$
$$954$$ 0 0
$$955$$ −19240.0 −0.651929
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −7080.00 −0.238400
$$960$$ 0 0
$$961$$ −15391.0 −0.516633
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 10290.0 0.343261
$$966$$ 0 0
$$967$$ −35012.0 −1.16433 −0.582167 0.813070i $$-0.697795\pi$$
−0.582167 + 0.813070i $$0.697795\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 11360.0 0.375448 0.187724 0.982222i $$-0.439889\pi$$
0.187724 + 0.982222i $$0.439889\pi$$
$$972$$ 0 0
$$973$$ −3696.00 −0.121776
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 24586.0 0.805093 0.402546 0.915400i $$-0.368125\pi$$
0.402546 + 0.915400i $$0.368125\pi$$
$$978$$ 0 0
$$979$$ −71568.0 −2.33639
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 8832.00 0.286569 0.143284 0.989682i $$-0.454234\pi$$
0.143284 + 0.989682i $$0.454234\pi$$
$$984$$ 0 0
$$985$$ 19190.0 0.620756
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 73568.0 2.36535
$$990$$ 0 0
$$991$$ 22912.0 0.734434 0.367217 0.930135i $$-0.380311\pi$$
0.367217 + 0.930135i $$0.380311\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 9960.00 0.317340
$$996$$ 0 0
$$997$$ −10974.0 −0.348596 −0.174298 0.984693i $$-0.555766\pi$$
−0.174298 + 0.984693i $$0.555766\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.a.v.1.1 1
3.2 odd 2 240.4.a.h.1.1 1
4.3 odd 2 360.4.a.l.1.1 1
12.11 even 2 120.4.a.a.1.1 1
15.2 even 4 1200.4.f.a.49.1 2
15.8 even 4 1200.4.f.a.49.2 2
15.14 odd 2 1200.4.a.k.1.1 1
20.3 even 4 1800.4.f.a.649.1 2
20.7 even 4 1800.4.f.a.649.2 2
20.19 odd 2 1800.4.a.n.1.1 1
24.5 odd 2 960.4.a.o.1.1 1
24.11 even 2 960.4.a.bf.1.1 1
60.23 odd 4 600.4.f.i.49.1 2
60.47 odd 4 600.4.f.i.49.2 2
60.59 even 2 600.4.a.l.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.a.a.1.1 1 12.11 even 2
240.4.a.h.1.1 1 3.2 odd 2
360.4.a.l.1.1 1 4.3 odd 2
600.4.a.l.1.1 1 60.59 even 2
600.4.f.i.49.1 2 60.23 odd 4
600.4.f.i.49.2 2 60.47 odd 4
720.4.a.v.1.1 1 1.1 even 1 trivial
960.4.a.o.1.1 1 24.5 odd 2
960.4.a.bf.1.1 1 24.11 even 2
1200.4.a.k.1.1 1 15.14 odd 2
1200.4.f.a.49.1 2 15.2 even 4
1200.4.f.a.49.2 2 15.8 even 4
1800.4.a.n.1.1 1 20.19 odd 2
1800.4.f.a.649.1 2 20.3 even 4
1800.4.f.a.649.2 2 20.7 even 4