Properties

Label 720.4.a.u
Level $720$
Weight $4$
Character orbit 720.a
Self dual yes
Analytic conductor $42.481$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(42.4813752041\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 5q^{5} - 6q^{7} + O(q^{10}) \) \( q + 5q^{5} - 6q^{7} + 32q^{11} - 38q^{13} - 26q^{17} - 100q^{19} - 78q^{23} + 25q^{25} + 50q^{29} + 108q^{31} - 30q^{35} + 266q^{37} - 22q^{41} - 442q^{43} - 514q^{47} - 307q^{49} - 2q^{53} + 160q^{55} + 500q^{59} - 518q^{61} - 190q^{65} - 126q^{67} + 412q^{71} - 878q^{73} - 192q^{77} - 600q^{79} + 282q^{83} - 130q^{85} + 150q^{89} + 228q^{91} - 500q^{95} + 386q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 5.00000 0 −6.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.4.a.u 1
3.b odd 2 1 80.4.a.d 1
4.b odd 2 1 45.4.a.d 1
12.b even 2 1 5.4.a.a 1
15.d odd 2 1 400.4.a.m 1
15.e even 4 2 400.4.c.k 2
20.d odd 2 1 225.4.a.b 1
20.e even 4 2 225.4.b.c 2
24.f even 2 1 320.4.a.g 1
24.h odd 2 1 320.4.a.h 1
28.d even 2 1 2205.4.a.q 1
36.f odd 6 2 405.4.e.c 2
36.h even 6 2 405.4.e.l 2
48.i odd 4 2 1280.4.d.l 2
48.k even 4 2 1280.4.d.e 2
60.h even 2 1 25.4.a.c 1
60.l odd 4 2 25.4.b.a 2
84.h odd 2 1 245.4.a.a 1
84.j odd 6 2 245.4.e.g 2
84.n even 6 2 245.4.e.f 2
120.i odd 2 1 1600.4.a.s 1
120.m even 2 1 1600.4.a.bi 1
132.d odd 2 1 605.4.a.d 1
156.h even 2 1 845.4.a.b 1
204.h even 2 1 1445.4.a.a 1
228.b odd 2 1 1805.4.a.h 1
420.o odd 2 1 1225.4.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 12.b even 2 1
25.4.a.c 1 60.h even 2 1
25.4.b.a 2 60.l odd 4 2
45.4.a.d 1 4.b odd 2 1
80.4.a.d 1 3.b odd 2 1
225.4.a.b 1 20.d odd 2 1
225.4.b.c 2 20.e even 4 2
245.4.a.a 1 84.h odd 2 1
245.4.e.f 2 84.n even 6 2
245.4.e.g 2 84.j odd 6 2
320.4.a.g 1 24.f even 2 1
320.4.a.h 1 24.h odd 2 1
400.4.a.m 1 15.d odd 2 1
400.4.c.k 2 15.e even 4 2
405.4.e.c 2 36.f odd 6 2
405.4.e.l 2 36.h even 6 2
605.4.a.d 1 132.d odd 2 1
720.4.a.u 1 1.a even 1 1 trivial
845.4.a.b 1 156.h even 2 1
1225.4.a.k 1 420.o odd 2 1
1280.4.d.e 2 48.k even 4 2
1280.4.d.l 2 48.i odd 4 2
1445.4.a.a 1 204.h even 2 1
1600.4.a.s 1 120.i odd 2 1
1600.4.a.bi 1 120.m even 2 1
1805.4.a.h 1 228.b odd 2 1
2205.4.a.q 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(720))\):

\( T_{7} + 6 \)
\( T_{11} - 32 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 - 5 T \)
$7$ \( 1 + 6 T + 343 T^{2} \)
$11$ \( 1 - 32 T + 1331 T^{2} \)
$13$ \( 1 + 38 T + 2197 T^{2} \)
$17$ \( 1 + 26 T + 4913 T^{2} \)
$19$ \( 1 + 100 T + 6859 T^{2} \)
$23$ \( 1 + 78 T + 12167 T^{2} \)
$29$ \( 1 - 50 T + 24389 T^{2} \)
$31$ \( 1 - 108 T + 29791 T^{2} \)
$37$ \( 1 - 266 T + 50653 T^{2} \)
$41$ \( 1 + 22 T + 68921 T^{2} \)
$43$ \( 1 + 442 T + 79507 T^{2} \)
$47$ \( 1 + 514 T + 103823 T^{2} \)
$53$ \( 1 + 2 T + 148877 T^{2} \)
$59$ \( 1 - 500 T + 205379 T^{2} \)
$61$ \( 1 + 518 T + 226981 T^{2} \)
$67$ \( 1 + 126 T + 300763 T^{2} \)
$71$ \( 1 - 412 T + 357911 T^{2} \)
$73$ \( 1 + 878 T + 389017 T^{2} \)
$79$ \( 1 + 600 T + 493039 T^{2} \)
$83$ \( 1 - 282 T + 571787 T^{2} \)
$89$ \( 1 - 150 T + 704969 T^{2} \)
$97$ \( 1 - 386 T + 912673 T^{2} \)
show more
show less