Properties

Label 720.4.a.c.1.1
Level $720$
Weight $4$
Character 720.1
Self dual yes
Analytic conductor $42.481$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,4,Mod(1,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 720.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{5} -32.0000 q^{7} +O(q^{10})\) \(q-5.00000 q^{5} -32.0000 q^{7} +36.0000 q^{11} -10.0000 q^{13} +78.0000 q^{17} -140.000 q^{19} -192.000 q^{23} +25.0000 q^{25} -6.00000 q^{29} +16.0000 q^{31} +160.000 q^{35} -34.0000 q^{37} +390.000 q^{41} +52.0000 q^{43} +408.000 q^{47} +681.000 q^{49} +114.000 q^{53} -180.000 q^{55} +516.000 q^{59} -58.0000 q^{61} +50.0000 q^{65} +892.000 q^{67} -120.000 q^{71} -646.000 q^{73} -1152.00 q^{77} +1168.00 q^{79} -732.000 q^{83} -390.000 q^{85} +1590.00 q^{89} +320.000 q^{91} +700.000 q^{95} +194.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −32.0000 −1.72784 −0.863919 0.503631i \(-0.831997\pi\)
−0.863919 + 0.503631i \(0.831997\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 36.0000 0.986764 0.493382 0.869813i \(-0.335760\pi\)
0.493382 + 0.869813i \(0.335760\pi\)
\(12\) 0 0
\(13\) −10.0000 −0.213346 −0.106673 0.994294i \(-0.534020\pi\)
−0.106673 + 0.994294i \(0.534020\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 78.0000 1.11281 0.556405 0.830911i \(-0.312180\pi\)
0.556405 + 0.830911i \(0.312180\pi\)
\(18\) 0 0
\(19\) −140.000 −1.69043 −0.845216 0.534425i \(-0.820528\pi\)
−0.845216 + 0.534425i \(0.820528\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −192.000 −1.74064 −0.870321 0.492485i \(-0.836089\pi\)
−0.870321 + 0.492485i \(0.836089\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −0.0384197 −0.0192099 0.999815i \(-0.506115\pi\)
−0.0192099 + 0.999815i \(0.506115\pi\)
\(30\) 0 0
\(31\) 16.0000 0.0926995 0.0463498 0.998925i \(-0.485241\pi\)
0.0463498 + 0.998925i \(0.485241\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 160.000 0.772712
\(36\) 0 0
\(37\) −34.0000 −0.151069 −0.0755347 0.997143i \(-0.524066\pi\)
−0.0755347 + 0.997143i \(0.524066\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 390.000 1.48556 0.742778 0.669538i \(-0.233508\pi\)
0.742778 + 0.669538i \(0.233508\pi\)
\(42\) 0 0
\(43\) 52.0000 0.184417 0.0922084 0.995740i \(-0.470607\pi\)
0.0922084 + 0.995740i \(0.470607\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 408.000 1.26623 0.633116 0.774057i \(-0.281776\pi\)
0.633116 + 0.774057i \(0.281776\pi\)
\(48\) 0 0
\(49\) 681.000 1.98542
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 114.000 0.295455 0.147727 0.989028i \(-0.452804\pi\)
0.147727 + 0.989028i \(0.452804\pi\)
\(54\) 0 0
\(55\) −180.000 −0.441294
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 516.000 1.13860 0.569301 0.822129i \(-0.307214\pi\)
0.569301 + 0.822129i \(0.307214\pi\)
\(60\) 0 0
\(61\) −58.0000 −0.121740 −0.0608700 0.998146i \(-0.519388\pi\)
−0.0608700 + 0.998146i \(0.519388\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 50.0000 0.0954113
\(66\) 0 0
\(67\) 892.000 1.62649 0.813247 0.581918i \(-0.197698\pi\)
0.813247 + 0.581918i \(0.197698\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) −646.000 −1.03573 −0.517867 0.855461i \(-0.673274\pi\)
−0.517867 + 0.855461i \(0.673274\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1152.00 −1.70497
\(78\) 0 0
\(79\) 1168.00 1.66342 0.831711 0.555209i \(-0.187362\pi\)
0.831711 + 0.555209i \(0.187362\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −732.000 −0.968041 −0.484021 0.875057i \(-0.660824\pi\)
−0.484021 + 0.875057i \(0.660824\pi\)
\(84\) 0 0
\(85\) −390.000 −0.497664
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1590.00 1.89370 0.946852 0.321669i \(-0.104244\pi\)
0.946852 + 0.321669i \(0.104244\pi\)
\(90\) 0 0
\(91\) 320.000 0.368628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 700.000 0.755984
\(96\) 0 0
\(97\) 194.000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −798.000 −0.786178 −0.393089 0.919500i \(-0.628594\pi\)
−0.393089 + 0.919500i \(0.628594\pi\)
\(102\) 0 0
\(103\) −272.000 −0.260203 −0.130102 0.991501i \(-0.541530\pi\)
−0.130102 + 0.991501i \(0.541530\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 156.000 0.140945 0.0704724 0.997514i \(-0.477549\pi\)
0.0704724 + 0.997514i \(0.477549\pi\)
\(108\) 0 0
\(109\) 1622.00 1.42532 0.712658 0.701512i \(-0.247491\pi\)
0.712658 + 0.701512i \(0.247491\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1074.00 −0.894101 −0.447051 0.894509i \(-0.647526\pi\)
−0.447051 + 0.894509i \(0.647526\pi\)
\(114\) 0 0
\(115\) 960.000 0.778439
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2496.00 −1.92276
\(120\) 0 0
\(121\) −35.0000 −0.0262960
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1528.00 1.06762 0.533811 0.845604i \(-0.320759\pi\)
0.533811 + 0.845604i \(0.320759\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2412.00 1.60868 0.804341 0.594168i \(-0.202518\pi\)
0.804341 + 0.594168i \(0.202518\pi\)
\(132\) 0 0
\(133\) 4480.00 2.92079
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2106.00 −1.31334 −0.656671 0.754178i \(-0.728036\pi\)
−0.656671 + 0.754178i \(0.728036\pi\)
\(138\) 0 0
\(139\) 556.000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −360.000 −0.210522
\(144\) 0 0
\(145\) 30.0000 0.0171818
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2418.00 1.32946 0.664732 0.747081i \(-0.268546\pi\)
0.664732 + 0.747081i \(0.268546\pi\)
\(150\) 0 0
\(151\) −2840.00 −1.53057 −0.765285 0.643692i \(-0.777402\pi\)
−0.765285 + 0.643692i \(0.777402\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −80.0000 −0.0414565
\(156\) 0 0
\(157\) 2054.00 1.04412 0.522061 0.852908i \(-0.325163\pi\)
0.522061 + 0.852908i \(0.325163\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6144.00 3.00755
\(162\) 0 0
\(163\) 460.000 0.221043 0.110521 0.993874i \(-0.464748\pi\)
0.110521 + 0.993874i \(0.464748\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2016.00 0.934148 0.467074 0.884218i \(-0.345308\pi\)
0.467074 + 0.884218i \(0.345308\pi\)
\(168\) 0 0
\(169\) −2097.00 −0.954483
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 618.000 0.271593 0.135797 0.990737i \(-0.456641\pi\)
0.135797 + 0.990737i \(0.456641\pi\)
\(174\) 0 0
\(175\) −800.000 −0.345568
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2964.00 −1.23765 −0.618826 0.785528i \(-0.712391\pi\)
−0.618826 + 0.785528i \(0.712391\pi\)
\(180\) 0 0
\(181\) −370.000 −0.151944 −0.0759721 0.997110i \(-0.524206\pi\)
−0.0759721 + 0.997110i \(0.524206\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 170.000 0.0675603
\(186\) 0 0
\(187\) 2808.00 1.09808
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1104.00 0.418234 0.209117 0.977891i \(-0.432941\pi\)
0.209117 + 0.977891i \(0.432941\pi\)
\(192\) 0 0
\(193\) −2398.00 −0.894362 −0.447181 0.894444i \(-0.647572\pi\)
−0.447181 + 0.894444i \(0.647572\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1278.00 −0.462202 −0.231101 0.972930i \(-0.574233\pi\)
−0.231101 + 0.972930i \(0.574233\pi\)
\(198\) 0 0
\(199\) −4472.00 −1.59302 −0.796512 0.604623i \(-0.793324\pi\)
−0.796512 + 0.604623i \(0.793324\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 192.000 0.0663830
\(204\) 0 0
\(205\) −1950.00 −0.664361
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5040.00 −1.66806
\(210\) 0 0
\(211\) −1340.00 −0.437201 −0.218600 0.975814i \(-0.570149\pi\)
−0.218600 + 0.975814i \(0.570149\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −260.000 −0.0824737
\(216\) 0 0
\(217\) −512.000 −0.160170
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −780.000 −0.237414
\(222\) 0 0
\(223\) −2360.00 −0.708687 −0.354344 0.935115i \(-0.615296\pi\)
−0.354344 + 0.935115i \(0.615296\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1380.00 0.403497 0.201748 0.979437i \(-0.435338\pi\)
0.201748 + 0.979437i \(0.435338\pi\)
\(228\) 0 0
\(229\) 1694.00 0.488833 0.244416 0.969670i \(-0.421404\pi\)
0.244416 + 0.969670i \(0.421404\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5190.00 1.45926 0.729631 0.683841i \(-0.239692\pi\)
0.729631 + 0.683841i \(0.239692\pi\)
\(234\) 0 0
\(235\) −2040.00 −0.566276
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2352.00 0.636562 0.318281 0.947996i \(-0.396895\pi\)
0.318281 + 0.947996i \(0.396895\pi\)
\(240\) 0 0
\(241\) −3502.00 −0.936032 −0.468016 0.883720i \(-0.655031\pi\)
−0.468016 + 0.883720i \(0.655031\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3405.00 −0.887908
\(246\) 0 0
\(247\) 1400.00 0.360647
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4788.00 1.20405 0.602024 0.798478i \(-0.294361\pi\)
0.602024 + 0.798478i \(0.294361\pi\)
\(252\) 0 0
\(253\) −6912.00 −1.71760
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1506.00 −0.365532 −0.182766 0.983156i \(-0.558505\pi\)
−0.182766 + 0.983156i \(0.558505\pi\)
\(258\) 0 0
\(259\) 1088.00 0.261023
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −432.000 −0.101286 −0.0506431 0.998717i \(-0.516127\pi\)
−0.0506431 + 0.998717i \(0.516127\pi\)
\(264\) 0 0
\(265\) −570.000 −0.132131
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −54.0000 −0.0122395 −0.00611977 0.999981i \(-0.501948\pi\)
−0.00611977 + 0.999981i \(0.501948\pi\)
\(270\) 0 0
\(271\) 6496.00 1.45610 0.728051 0.685522i \(-0.240426\pi\)
0.728051 + 0.685522i \(0.240426\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 900.000 0.197353
\(276\) 0 0
\(277\) −466.000 −0.101080 −0.0505401 0.998722i \(-0.516094\pi\)
−0.0505401 + 0.998722i \(0.516094\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4854.00 1.03048 0.515241 0.857045i \(-0.327702\pi\)
0.515241 + 0.857045i \(0.327702\pi\)
\(282\) 0 0
\(283\) 4516.00 0.948581 0.474290 0.880368i \(-0.342705\pi\)
0.474290 + 0.880368i \(0.342705\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12480.0 −2.56680
\(288\) 0 0
\(289\) 1171.00 0.238347
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8574.00 −1.70955 −0.854775 0.518998i \(-0.826305\pi\)
−0.854775 + 0.518998i \(0.826305\pi\)
\(294\) 0 0
\(295\) −2580.00 −0.509198
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1920.00 0.371359
\(300\) 0 0
\(301\) −1664.00 −0.318642
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 290.000 0.0544438
\(306\) 0 0
\(307\) −3476.00 −0.646208 −0.323104 0.946363i \(-0.604726\pi\)
−0.323104 + 0.946363i \(0.604726\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2424.00 0.441969 0.220985 0.975277i \(-0.429073\pi\)
0.220985 + 0.975277i \(0.429073\pi\)
\(312\) 0 0
\(313\) −1558.00 −0.281353 −0.140676 0.990056i \(-0.544928\pi\)
−0.140676 + 0.990056i \(0.544928\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8538.00 1.51275 0.756375 0.654138i \(-0.226968\pi\)
0.756375 + 0.654138i \(0.226968\pi\)
\(318\) 0 0
\(319\) −216.000 −0.0379112
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10920.0 −1.88113
\(324\) 0 0
\(325\) −250.000 −0.0426692
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13056.0 −2.18784
\(330\) 0 0
\(331\) 988.000 0.164065 0.0820323 0.996630i \(-0.473859\pi\)
0.0820323 + 0.996630i \(0.473859\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4460.00 −0.727391
\(336\) 0 0
\(337\) 2546.00 0.411541 0.205771 0.978600i \(-0.434030\pi\)
0.205771 + 0.978600i \(0.434030\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 576.000 0.0914726
\(342\) 0 0
\(343\) −10816.0 −1.70265
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8556.00 1.32366 0.661830 0.749654i \(-0.269780\pi\)
0.661830 + 0.749654i \(0.269780\pi\)
\(348\) 0 0
\(349\) −3706.00 −0.568417 −0.284209 0.958762i \(-0.591731\pi\)
−0.284209 + 0.958762i \(0.591731\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11394.0 −1.71796 −0.858982 0.512005i \(-0.828903\pi\)
−0.858982 + 0.512005i \(0.828903\pi\)
\(354\) 0 0
\(355\) 600.000 0.0897034
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −264.000 −0.0388117 −0.0194058 0.999812i \(-0.506177\pi\)
−0.0194058 + 0.999812i \(0.506177\pi\)
\(360\) 0 0
\(361\) 12741.0 1.85756
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3230.00 0.463194
\(366\) 0 0
\(367\) −10232.0 −1.45533 −0.727665 0.685933i \(-0.759394\pi\)
−0.727665 + 0.685933i \(0.759394\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3648.00 −0.510498
\(372\) 0 0
\(373\) −562.000 −0.0780141 −0.0390070 0.999239i \(-0.512419\pi\)
−0.0390070 + 0.999239i \(0.512419\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 60.0000 0.00819670
\(378\) 0 0
\(379\) 7228.00 0.979624 0.489812 0.871828i \(-0.337065\pi\)
0.489812 + 0.871828i \(0.337065\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5736.00 −0.765263 −0.382632 0.923901i \(-0.624982\pi\)
−0.382632 + 0.923901i \(0.624982\pi\)
\(384\) 0 0
\(385\) 5760.00 0.762485
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9186.00 1.19730 0.598649 0.801012i \(-0.295705\pi\)
0.598649 + 0.801012i \(0.295705\pi\)
\(390\) 0 0
\(391\) −14976.0 −1.93700
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5840.00 −0.743905
\(396\) 0 0
\(397\) −394.000 −0.0498093 −0.0249047 0.999690i \(-0.507928\pi\)
−0.0249047 + 0.999690i \(0.507928\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1614.00 0.200996 0.100498 0.994937i \(-0.467956\pi\)
0.100498 + 0.994937i \(0.467956\pi\)
\(402\) 0 0
\(403\) −160.000 −0.0197771
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1224.00 −0.149070
\(408\) 0 0
\(409\) 1034.00 0.125007 0.0625037 0.998045i \(-0.480091\pi\)
0.0625037 + 0.998045i \(0.480091\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16512.0 −1.96732
\(414\) 0 0
\(415\) 3660.00 0.432921
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3708.00 0.432333 0.216167 0.976356i \(-0.430645\pi\)
0.216167 + 0.976356i \(0.430645\pi\)
\(420\) 0 0
\(421\) −4930.00 −0.570721 −0.285360 0.958420i \(-0.592113\pi\)
−0.285360 + 0.958420i \(0.592113\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1950.00 0.222562
\(426\) 0 0
\(427\) 1856.00 0.210347
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2592.00 −0.289680 −0.144840 0.989455i \(-0.546267\pi\)
−0.144840 + 0.989455i \(0.546267\pi\)
\(432\) 0 0
\(433\) 2162.00 0.239952 0.119976 0.992777i \(-0.461718\pi\)
0.119976 + 0.992777i \(0.461718\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26880.0 2.94244
\(438\) 0 0
\(439\) −1352.00 −0.146987 −0.0734937 0.997296i \(-0.523415\pi\)
−0.0734937 + 0.997296i \(0.523415\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5532.00 0.593303 0.296652 0.954986i \(-0.404130\pi\)
0.296652 + 0.954986i \(0.404130\pi\)
\(444\) 0 0
\(445\) −7950.00 −0.846890
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3198.00 0.336131 0.168066 0.985776i \(-0.446248\pi\)
0.168066 + 0.985776i \(0.446248\pi\)
\(450\) 0 0
\(451\) 14040.0 1.46589
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1600.00 −0.164855
\(456\) 0 0
\(457\) −1510.00 −0.154562 −0.0772810 0.997009i \(-0.524624\pi\)
−0.0772810 + 0.997009i \(0.524624\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16086.0 −1.62516 −0.812581 0.582848i \(-0.801938\pi\)
−0.812581 + 0.582848i \(0.801938\pi\)
\(462\) 0 0
\(463\) −5384.00 −0.540423 −0.270211 0.962801i \(-0.587094\pi\)
−0.270211 + 0.962801i \(0.587094\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2604.00 −0.258027 −0.129014 0.991643i \(-0.541181\pi\)
−0.129014 + 0.991643i \(0.541181\pi\)
\(468\) 0 0
\(469\) −28544.0 −2.81032
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1872.00 0.181976
\(474\) 0 0
\(475\) −3500.00 −0.338086
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11136.0 1.06225 0.531124 0.847294i \(-0.321770\pi\)
0.531124 + 0.847294i \(0.321770\pi\)
\(480\) 0 0
\(481\) 340.000 0.0322301
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −970.000 −0.0908153
\(486\) 0 0
\(487\) −14624.0 −1.36073 −0.680366 0.732872i \(-0.738179\pi\)
−0.680366 + 0.732872i \(0.738179\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11844.0 1.08862 0.544310 0.838884i \(-0.316792\pi\)
0.544310 + 0.838884i \(0.316792\pi\)
\(492\) 0 0
\(493\) −468.000 −0.0427539
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3840.00 0.346575
\(498\) 0 0
\(499\) 11284.0 1.01231 0.506154 0.862443i \(-0.331067\pi\)
0.506154 + 0.862443i \(0.331067\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4032.00 0.357412 0.178706 0.983903i \(-0.442809\pi\)
0.178706 + 0.983903i \(0.442809\pi\)
\(504\) 0 0
\(505\) 3990.00 0.351589
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17562.0 1.52932 0.764658 0.644436i \(-0.222908\pi\)
0.764658 + 0.644436i \(0.222908\pi\)
\(510\) 0 0
\(511\) 20672.0 1.78958
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1360.00 0.116367
\(516\) 0 0
\(517\) 14688.0 1.24947
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3162.00 −0.265892 −0.132946 0.991123i \(-0.542444\pi\)
−0.132946 + 0.991123i \(0.542444\pi\)
\(522\) 0 0
\(523\) −6764.00 −0.565524 −0.282762 0.959190i \(-0.591251\pi\)
−0.282762 + 0.959190i \(0.591251\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1248.00 0.103157
\(528\) 0 0
\(529\) 24697.0 2.02983
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3900.00 −0.316938
\(534\) 0 0
\(535\) −780.000 −0.0630324
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 24516.0 1.95914
\(540\) 0 0
\(541\) 17798.0 1.41441 0.707205 0.707009i \(-0.249956\pi\)
0.707205 + 0.707009i \(0.249956\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8110.00 −0.637421
\(546\) 0 0
\(547\) 19996.0 1.56301 0.781506 0.623898i \(-0.214452\pi\)
0.781506 + 0.623898i \(0.214452\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 840.000 0.0649459
\(552\) 0 0
\(553\) −37376.0 −2.87412
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11094.0 −0.843928 −0.421964 0.906613i \(-0.638659\pi\)
−0.421964 + 0.906613i \(0.638659\pi\)
\(558\) 0 0
\(559\) −520.000 −0.0393446
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 900.000 0.0673721 0.0336860 0.999432i \(-0.489275\pi\)
0.0336860 + 0.999432i \(0.489275\pi\)
\(564\) 0 0
\(565\) 5370.00 0.399854
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7914.00 −0.583079 −0.291540 0.956559i \(-0.594168\pi\)
−0.291540 + 0.956559i \(0.594168\pi\)
\(570\) 0 0
\(571\) 2380.00 0.174431 0.0872153 0.996189i \(-0.472203\pi\)
0.0872153 + 0.996189i \(0.472203\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4800.00 −0.348128
\(576\) 0 0
\(577\) −25726.0 −1.85613 −0.928065 0.372417i \(-0.878529\pi\)
−0.928065 + 0.372417i \(0.878529\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 23424.0 1.67262
\(582\) 0 0
\(583\) 4104.00 0.291544
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3612.00 0.253975 0.126987 0.991904i \(-0.459469\pi\)
0.126987 + 0.991904i \(0.459469\pi\)
\(588\) 0 0
\(589\) −2240.00 −0.156702
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2898.00 −0.200686 −0.100343 0.994953i \(-0.531994\pi\)
−0.100343 + 0.994953i \(0.531994\pi\)
\(594\) 0 0
\(595\) 12480.0 0.859883
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2664.00 0.181716 0.0908582 0.995864i \(-0.471039\pi\)
0.0908582 + 0.995864i \(0.471039\pi\)
\(600\) 0 0
\(601\) −502.000 −0.0340716 −0.0170358 0.999855i \(-0.505423\pi\)
−0.0170358 + 0.999855i \(0.505423\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 175.000 0.0117599
\(606\) 0 0
\(607\) −7976.00 −0.533337 −0.266669 0.963788i \(-0.585923\pi\)
−0.266669 + 0.963788i \(0.585923\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4080.00 −0.270146
\(612\) 0 0
\(613\) 20414.0 1.34505 0.672523 0.740076i \(-0.265210\pi\)
0.672523 + 0.740076i \(0.265210\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6342.00 0.413808 0.206904 0.978361i \(-0.433661\pi\)
0.206904 + 0.978361i \(0.433661\pi\)
\(618\) 0 0
\(619\) −22676.0 −1.47242 −0.736208 0.676755i \(-0.763385\pi\)
−0.736208 + 0.676755i \(0.763385\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −50880.0 −3.27201
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2652.00 −0.168112
\(630\) 0 0
\(631\) 7048.00 0.444654 0.222327 0.974972i \(-0.428635\pi\)
0.222327 + 0.974972i \(0.428635\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7640.00 −0.477455
\(636\) 0 0
\(637\) −6810.00 −0.423582
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20286.0 1.25000 0.624999 0.780625i \(-0.285099\pi\)
0.624999 + 0.780625i \(0.285099\pi\)
\(642\) 0 0
\(643\) 16108.0 0.987928 0.493964 0.869482i \(-0.335548\pi\)
0.493964 + 0.869482i \(0.335548\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27456.0 1.66833 0.834163 0.551518i \(-0.185951\pi\)
0.834163 + 0.551518i \(0.185951\pi\)
\(648\) 0 0
\(649\) 18576.0 1.12353
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12522.0 0.750419 0.375210 0.926940i \(-0.377571\pi\)
0.375210 + 0.926940i \(0.377571\pi\)
\(654\) 0 0
\(655\) −12060.0 −0.719425
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16308.0 −0.963990 −0.481995 0.876174i \(-0.660088\pi\)
−0.481995 + 0.876174i \(0.660088\pi\)
\(660\) 0 0
\(661\) 32078.0 1.88758 0.943789 0.330547i \(-0.107233\pi\)
0.943789 + 0.330547i \(0.107233\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −22400.0 −1.30622
\(666\) 0 0
\(667\) 1152.00 0.0668750
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2088.00 −0.120129
\(672\) 0 0
\(673\) 4610.00 0.264045 0.132023 0.991247i \(-0.457853\pi\)
0.132023 + 0.991247i \(0.457853\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10782.0 −0.612091 −0.306046 0.952017i \(-0.599006\pi\)
−0.306046 + 0.952017i \(0.599006\pi\)
\(678\) 0 0
\(679\) −6208.00 −0.350871
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2892.00 0.162019 0.0810097 0.996713i \(-0.474186\pi\)
0.0810097 + 0.996713i \(0.474186\pi\)
\(684\) 0 0
\(685\) 10530.0 0.587344
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1140.00 −0.0630342
\(690\) 0 0
\(691\) 29572.0 1.62803 0.814017 0.580841i \(-0.197276\pi\)
0.814017 + 0.580841i \(0.197276\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2780.00 −0.151729
\(696\) 0 0
\(697\) 30420.0 1.65314
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5766.00 −0.310669 −0.155334 0.987862i \(-0.549646\pi\)
−0.155334 + 0.987862i \(0.549646\pi\)
\(702\) 0 0
\(703\) 4760.00 0.255372
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 25536.0 1.35839
\(708\) 0 0
\(709\) 3326.00 0.176178 0.0880892 0.996113i \(-0.471924\pi\)
0.0880892 + 0.996113i \(0.471924\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3072.00 −0.161357
\(714\) 0 0
\(715\) 1800.00 0.0941485
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7728.00 −0.400843 −0.200421 0.979710i \(-0.564231\pi\)
−0.200421 + 0.979710i \(0.564231\pi\)
\(720\) 0 0
\(721\) 8704.00 0.449589
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −150.000 −0.00768395
\(726\) 0 0
\(727\) 21616.0 1.10274 0.551371 0.834260i \(-0.314105\pi\)
0.551371 + 0.834260i \(0.314105\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4056.00 0.205221
\(732\) 0 0
\(733\) 10118.0 0.509846 0.254923 0.966961i \(-0.417950\pi\)
0.254923 + 0.966961i \(0.417950\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 32112.0 1.60497
\(738\) 0 0
\(739\) −10460.0 −0.520673 −0.260336 0.965518i \(-0.583833\pi\)
−0.260336 + 0.965518i \(0.583833\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17232.0 0.850849 0.425424 0.904994i \(-0.360125\pi\)
0.425424 + 0.904994i \(0.360125\pi\)
\(744\) 0 0
\(745\) −12090.0 −0.594555
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4992.00 −0.243530
\(750\) 0 0
\(751\) −26912.0 −1.30763 −0.653817 0.756653i \(-0.726833\pi\)
−0.653817 + 0.756653i \(0.726833\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14200.0 0.684491
\(756\) 0 0
\(757\) 13838.0 0.664400 0.332200 0.943209i \(-0.392209\pi\)
0.332200 + 0.943209i \(0.392209\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17238.0 0.821126 0.410563 0.911832i \(-0.365332\pi\)
0.410563 + 0.911832i \(0.365332\pi\)
\(762\) 0 0
\(763\) −51904.0 −2.46271
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5160.00 −0.242916
\(768\) 0 0
\(769\) 21698.0 1.01749 0.508745 0.860917i \(-0.330110\pi\)
0.508745 + 0.860917i \(0.330110\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18366.0 −0.854565 −0.427283 0.904118i \(-0.640529\pi\)
−0.427283 + 0.904118i \(0.640529\pi\)
\(774\) 0 0
\(775\) 400.000 0.0185399
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −54600.0 −2.51123
\(780\) 0 0
\(781\) −4320.00 −0.197928
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10270.0 −0.466945
\(786\) 0 0
\(787\) 30316.0 1.37312 0.686562 0.727071i \(-0.259119\pi\)
0.686562 + 0.727071i \(0.259119\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 34368.0 1.54486
\(792\) 0 0
\(793\) 580.000 0.0259728
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7494.00 −0.333063 −0.166531 0.986036i \(-0.553257\pi\)
−0.166531 + 0.986036i \(0.553257\pi\)
\(798\) 0 0
\(799\) 31824.0 1.40908
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −23256.0 −1.02203
\(804\) 0 0
\(805\) −30720.0 −1.34502
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11526.0 0.500906 0.250453 0.968129i \(-0.419421\pi\)
0.250453 + 0.968129i \(0.419421\pi\)
\(810\) 0 0
\(811\) 33820.0 1.46434 0.732171 0.681121i \(-0.238507\pi\)
0.732171 + 0.681121i \(0.238507\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2300.00 −0.0988534
\(816\) 0 0
\(817\) −7280.00 −0.311744
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19566.0 −0.831739 −0.415870 0.909424i \(-0.636523\pi\)
−0.415870 + 0.909424i \(0.636523\pi\)
\(822\) 0 0
\(823\) 40096.0 1.69825 0.849124 0.528193i \(-0.177130\pi\)
0.849124 + 0.528193i \(0.177130\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31884.0 1.34065 0.670324 0.742069i \(-0.266155\pi\)
0.670324 + 0.742069i \(0.266155\pi\)
\(828\) 0 0
\(829\) −24442.0 −1.02401 −0.512006 0.858982i \(-0.671097\pi\)
−0.512006 + 0.858982i \(0.671097\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 53118.0 2.20940
\(834\) 0 0
\(835\) −10080.0 −0.417764
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −31944.0 −1.31446 −0.657228 0.753691i \(-0.728271\pi\)
−0.657228 + 0.753691i \(0.728271\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10485.0 0.426858
\(846\) 0 0
\(847\) 1120.00 0.0454352
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6528.00 0.262958
\(852\) 0 0
\(853\) 17486.0 0.701887 0.350943 0.936397i \(-0.385861\pi\)
0.350943 + 0.936397i \(0.385861\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −43434.0 −1.73125 −0.865623 0.500697i \(-0.833077\pi\)
−0.865623 + 0.500697i \(0.833077\pi\)
\(858\) 0 0
\(859\) −10820.0 −0.429771 −0.214886 0.976639i \(-0.568938\pi\)
−0.214886 + 0.976639i \(0.568938\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 29976.0 1.18238 0.591191 0.806532i \(-0.298658\pi\)
0.591191 + 0.806532i \(0.298658\pi\)
\(864\) 0 0
\(865\) −3090.00 −0.121460
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 42048.0 1.64140
\(870\) 0 0
\(871\) −8920.00 −0.347007
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4000.00 0.154542
\(876\) 0 0
\(877\) −40522.0 −1.56024 −0.780120 0.625630i \(-0.784842\pi\)
−0.780120 + 0.625630i \(0.784842\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −15570.0 −0.595422 −0.297711 0.954656i \(-0.596223\pi\)
−0.297711 + 0.954656i \(0.596223\pi\)
\(882\) 0 0
\(883\) 1084.00 0.0413131 0.0206566 0.999787i \(-0.493424\pi\)
0.0206566 + 0.999787i \(0.493424\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8208.00 −0.310708 −0.155354 0.987859i \(-0.549652\pi\)
−0.155354 + 0.987859i \(0.549652\pi\)
\(888\) 0 0
\(889\) −48896.0 −1.84468
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −57120.0 −2.14048
\(894\) 0 0
\(895\) 14820.0 0.553495
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −96.0000 −0.00356149
\(900\) 0 0
\(901\) 8892.00 0.328785
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1850.00 0.0679515
\(906\) 0 0
\(907\) −34076.0 −1.24749 −0.623746 0.781627i \(-0.714390\pi\)
−0.623746 + 0.781627i \(0.714390\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15072.0 −0.548142 −0.274071 0.961709i \(-0.588370\pi\)
−0.274071 + 0.961709i \(0.588370\pi\)
\(912\) 0 0
\(913\) −26352.0 −0.955229
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −77184.0 −2.77954
\(918\) 0 0
\(919\) −24392.0 −0.875536 −0.437768 0.899088i \(-0.644231\pi\)
−0.437768 + 0.899088i \(0.644231\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1200.00 0.0427936
\(924\) 0 0
\(925\) −850.000 −0.0302139
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13602.0 −0.480374 −0.240187 0.970727i \(-0.577209\pi\)
−0.240187 + 0.970727i \(0.577209\pi\)
\(930\) 0 0
\(931\) −95340.0 −3.35622
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −14040.0 −0.491077
\(936\) 0 0
\(937\) −47974.0 −1.67262 −0.836309 0.548259i \(-0.815291\pi\)
−0.836309 + 0.548259i \(0.815291\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 48330.0 1.67430 0.837148 0.546976i \(-0.184221\pi\)
0.837148 + 0.546976i \(0.184221\pi\)
\(942\) 0 0
\(943\) −74880.0 −2.58582
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9324.00 −0.319946 −0.159973 0.987121i \(-0.551141\pi\)
−0.159973 + 0.987121i \(0.551141\pi\)
\(948\) 0 0
\(949\) 6460.00 0.220970
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14838.0 0.504355 0.252177 0.967681i \(-0.418853\pi\)
0.252177 + 0.967681i \(0.418853\pi\)
\(954\) 0 0
\(955\) −5520.00 −0.187040
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 67392.0 2.26924
\(960\) 0 0
\(961\) −29535.0 −0.991407
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11990.0 0.399971
\(966\) 0 0
\(967\) −11360.0 −0.377780 −0.188890 0.981998i \(-0.560489\pi\)
−0.188890 + 0.981998i \(0.560489\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6972.00 −0.230424 −0.115212 0.993341i \(-0.536755\pi\)
−0.115212 + 0.993341i \(0.536755\pi\)
\(972\) 0 0
\(973\) −17792.0 −0.586213
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41166.0 1.34802 0.674011 0.738722i \(-0.264570\pi\)
0.674011 + 0.738722i \(0.264570\pi\)
\(978\) 0 0
\(979\) 57240.0 1.86864
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22464.0 0.728881 0.364441 0.931227i \(-0.381260\pi\)
0.364441 + 0.931227i \(0.381260\pi\)
\(984\) 0 0
\(985\) 6390.00 0.206703
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9984.00 −0.321004
\(990\) 0 0
\(991\) 10192.0 0.326700 0.163350 0.986568i \(-0.447770\pi\)
0.163350 + 0.986568i \(0.447770\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22360.0 0.712422
\(996\) 0 0
\(997\) −322.000 −0.0102285 −0.00511426 0.999987i \(-0.501628\pi\)
−0.00511426 + 0.999987i \(0.501628\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.a.c.1.1 1
3.2 odd 2 240.4.a.j.1.1 1
4.3 odd 2 180.4.a.c.1.1 1
12.11 even 2 60.4.a.b.1.1 1
15.2 even 4 1200.4.f.e.49.1 2
15.8 even 4 1200.4.f.e.49.2 2
15.14 odd 2 1200.4.a.s.1.1 1
20.3 even 4 900.4.d.b.649.1 2
20.7 even 4 900.4.d.b.649.2 2
20.19 odd 2 900.4.a.b.1.1 1
24.5 odd 2 960.4.a.a.1.1 1
24.11 even 2 960.4.a.bb.1.1 1
36.7 odd 6 1620.4.i.g.1081.1 2
36.11 even 6 1620.4.i.a.1081.1 2
36.23 even 6 1620.4.i.a.541.1 2
36.31 odd 6 1620.4.i.g.541.1 2
60.23 odd 4 300.4.d.d.49.1 2
60.47 odd 4 300.4.d.d.49.2 2
60.59 even 2 300.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.4.a.b.1.1 1 12.11 even 2
180.4.a.c.1.1 1 4.3 odd 2
240.4.a.j.1.1 1 3.2 odd 2
300.4.a.e.1.1 1 60.59 even 2
300.4.d.d.49.1 2 60.23 odd 4
300.4.d.d.49.2 2 60.47 odd 4
720.4.a.c.1.1 1 1.1 even 1 trivial
900.4.a.b.1.1 1 20.19 odd 2
900.4.d.b.649.1 2 20.3 even 4
900.4.d.b.649.2 2 20.7 even 4
960.4.a.a.1.1 1 24.5 odd 2
960.4.a.bb.1.1 1 24.11 even 2
1200.4.a.s.1.1 1 15.14 odd 2
1200.4.f.e.49.1 2 15.2 even 4
1200.4.f.e.49.2 2 15.8 even 4
1620.4.i.a.541.1 2 36.23 even 6
1620.4.i.a.1081.1 2 36.11 even 6
1620.4.i.g.541.1 2 36.31 odd 6
1620.4.i.g.1081.1 2 36.7 odd 6