Properties

Label 720.4.a.a.1.1
Level $720$
Weight $4$
Character 720.1
Self dual yes
Analytic conductor $42.481$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 720.1

$q$-expansion

\(f(q)\) \(=\) \(q-5.00000 q^{5} -34.0000 q^{7} +O(q^{10})\) \(q-5.00000 q^{5} -34.0000 q^{7} -18.0000 q^{11} +12.0000 q^{13} -106.000 q^{17} +44.0000 q^{19} -56.0000 q^{23} +25.0000 q^{25} +270.000 q^{29} -204.000 q^{31} +170.000 q^{35} +120.000 q^{37} +80.0000 q^{41} -536.000 q^{43} +536.000 q^{47} +813.000 q^{49} +542.000 q^{53} +90.0000 q^{55} +174.000 q^{59} +186.000 q^{61} -60.0000 q^{65} -332.000 q^{67} +132.000 q^{71} -602.000 q^{73} +612.000 q^{77} +548.000 q^{79} +492.000 q^{83} +530.000 q^{85} -1052.00 q^{89} -408.000 q^{91} -220.000 q^{95} +482.000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −34.0000 −1.83583 −0.917914 0.396780i \(-0.870128\pi\)
−0.917914 + 0.396780i \(0.870128\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −18.0000 −0.493382 −0.246691 0.969094i \(-0.579343\pi\)
−0.246691 + 0.969094i \(0.579343\pi\)
\(12\) 0 0
\(13\) 12.0000 0.256015 0.128008 0.991773i \(-0.459142\pi\)
0.128008 + 0.991773i \(0.459142\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −106.000 −1.51228 −0.756140 0.654409i \(-0.772917\pi\)
−0.756140 + 0.654409i \(0.772917\pi\)
\(18\) 0 0
\(19\) 44.0000 0.531279 0.265639 0.964072i \(-0.414417\pi\)
0.265639 + 0.964072i \(0.414417\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −56.0000 −0.507687 −0.253844 0.967245i \(-0.581695\pi\)
−0.253844 + 0.967245i \(0.581695\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 270.000 1.72889 0.864444 0.502729i \(-0.167671\pi\)
0.864444 + 0.502729i \(0.167671\pi\)
\(30\) 0 0
\(31\) −204.000 −1.18192 −0.590959 0.806701i \(-0.701251\pi\)
−0.590959 + 0.806701i \(0.701251\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 170.000 0.821007
\(36\) 0 0
\(37\) 120.000 0.533186 0.266593 0.963809i \(-0.414102\pi\)
0.266593 + 0.963809i \(0.414102\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 80.0000 0.304729 0.152365 0.988324i \(-0.451311\pi\)
0.152365 + 0.988324i \(0.451311\pi\)
\(42\) 0 0
\(43\) −536.000 −1.90091 −0.950456 0.310858i \(-0.899383\pi\)
−0.950456 + 0.310858i \(0.899383\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 536.000 1.66348 0.831741 0.555164i \(-0.187345\pi\)
0.831741 + 0.555164i \(0.187345\pi\)
\(48\) 0 0
\(49\) 813.000 2.37026
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 542.000 1.40471 0.702353 0.711829i \(-0.252133\pi\)
0.702353 + 0.711829i \(0.252133\pi\)
\(54\) 0 0
\(55\) 90.0000 0.220647
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 174.000 0.383947 0.191973 0.981400i \(-0.438511\pi\)
0.191973 + 0.981400i \(0.438511\pi\)
\(60\) 0 0
\(61\) 186.000 0.390408 0.195204 0.980763i \(-0.437463\pi\)
0.195204 + 0.980763i \(0.437463\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −60.0000 −0.114494
\(66\) 0 0
\(67\) −332.000 −0.605377 −0.302688 0.953090i \(-0.597884\pi\)
−0.302688 + 0.953090i \(0.597884\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 132.000 0.220641 0.110321 0.993896i \(-0.464812\pi\)
0.110321 + 0.993896i \(0.464812\pi\)
\(72\) 0 0
\(73\) −602.000 −0.965189 −0.482594 0.875844i \(-0.660305\pi\)
−0.482594 + 0.875844i \(0.660305\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 612.000 0.905765
\(78\) 0 0
\(79\) 548.000 0.780441 0.390220 0.920721i \(-0.372399\pi\)
0.390220 + 0.920721i \(0.372399\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 492.000 0.650651 0.325325 0.945602i \(-0.394526\pi\)
0.325325 + 0.945602i \(0.394526\pi\)
\(84\) 0 0
\(85\) 530.000 0.676313
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1052.00 −1.25294 −0.626471 0.779445i \(-0.715501\pi\)
−0.626471 + 0.779445i \(0.715501\pi\)
\(90\) 0 0
\(91\) −408.000 −0.470000
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −220.000 −0.237595
\(96\) 0 0
\(97\) 482.000 0.504533 0.252266 0.967658i \(-0.418824\pi\)
0.252266 + 0.967658i \(0.418824\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1214.00 1.19601 0.598007 0.801491i \(-0.295959\pi\)
0.598007 + 0.801491i \(0.295959\pi\)
\(102\) 0 0
\(103\) −898.000 −0.859054 −0.429527 0.903054i \(-0.641320\pi\)
−0.429527 + 0.903054i \(0.641320\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1364.00 −1.23236 −0.616182 0.787604i \(-0.711321\pi\)
−0.616182 + 0.787604i \(0.711321\pi\)
\(108\) 0 0
\(109\) 218.000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1386.00 1.15384 0.576920 0.816801i \(-0.304254\pi\)
0.576920 + 0.816801i \(0.304254\pi\)
\(114\) 0 0
\(115\) 280.000 0.227045
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3604.00 2.77629
\(120\) 0 0
\(121\) −1007.00 −0.756574
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 814.000 0.568747 0.284373 0.958714i \(-0.408214\pi\)
0.284373 + 0.958714i \(0.408214\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1282.00 0.855029 0.427515 0.904008i \(-0.359389\pi\)
0.427515 + 0.904008i \(0.359389\pi\)
\(132\) 0 0
\(133\) −1496.00 −0.975336
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3066.00 1.91202 0.956008 0.293342i \(-0.0947675\pi\)
0.956008 + 0.293342i \(0.0947675\pi\)
\(138\) 0 0
\(139\) 1332.00 0.812797 0.406398 0.913696i \(-0.366784\pi\)
0.406398 + 0.913696i \(0.366784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −216.000 −0.126313
\(144\) 0 0
\(145\) −1350.00 −0.773182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1470.00 −0.808236 −0.404118 0.914707i \(-0.632421\pi\)
−0.404118 + 0.914707i \(0.632421\pi\)
\(150\) 0 0
\(151\) 2592.00 1.39691 0.698457 0.715652i \(-0.253870\pi\)
0.698457 + 0.715652i \(0.253870\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1020.00 0.528570
\(156\) 0 0
\(157\) −3332.00 −1.69377 −0.846887 0.531773i \(-0.821526\pi\)
−0.846887 + 0.531773i \(0.821526\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1904.00 0.932026
\(162\) 0 0
\(163\) 748.000 0.359435 0.179717 0.983718i \(-0.442482\pi\)
0.179717 + 0.983718i \(0.442482\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2560.00 1.18622 0.593110 0.805121i \(-0.297900\pi\)
0.593110 + 0.805121i \(0.297900\pi\)
\(168\) 0 0
\(169\) −2053.00 −0.934456
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1206.00 0.530003 0.265001 0.964248i \(-0.414628\pi\)
0.265001 + 0.964248i \(0.414628\pi\)
\(174\) 0 0
\(175\) −850.000 −0.367165
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1694.00 0.707349 0.353675 0.935369i \(-0.384932\pi\)
0.353675 + 0.935369i \(0.384932\pi\)
\(180\) 0 0
\(181\) 3722.00 1.52848 0.764238 0.644935i \(-0.223115\pi\)
0.764238 + 0.644935i \(0.223115\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −600.000 −0.238448
\(186\) 0 0
\(187\) 1908.00 0.746133
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2836.00 −1.07438 −0.537188 0.843463i \(-0.680513\pi\)
−0.537188 + 0.843463i \(0.680513\pi\)
\(192\) 0 0
\(193\) −234.000 −0.0872730 −0.0436365 0.999047i \(-0.513894\pi\)
−0.0436365 + 0.999047i \(0.513894\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3814.00 −1.37937 −0.689686 0.724109i \(-0.742251\pi\)
−0.689686 + 0.724109i \(0.742251\pi\)
\(198\) 0 0
\(199\) −2352.00 −0.837833 −0.418917 0.908025i \(-0.637590\pi\)
−0.418917 + 0.908025i \(0.637590\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9180.00 −3.17394
\(204\) 0 0
\(205\) −400.000 −0.136279
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −792.000 −0.262123
\(210\) 0 0
\(211\) 3660.00 1.19415 0.597073 0.802187i \(-0.296330\pi\)
0.597073 + 0.802187i \(0.296330\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2680.00 0.850114
\(216\) 0 0
\(217\) 6936.00 2.16980
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1272.00 −0.387167
\(222\) 0 0
\(223\) 2646.00 0.794571 0.397285 0.917695i \(-0.369952\pi\)
0.397285 + 0.917695i \(0.369952\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −240.000 −0.0701734 −0.0350867 0.999384i \(-0.511171\pi\)
−0.0350867 + 0.999384i \(0.511171\pi\)
\(228\) 0 0
\(229\) −4698.00 −1.35569 −0.677844 0.735206i \(-0.737086\pi\)
−0.677844 + 0.735206i \(0.737086\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3814.00 1.07238 0.536188 0.844099i \(-0.319864\pi\)
0.536188 + 0.844099i \(0.319864\pi\)
\(234\) 0 0
\(235\) −2680.00 −0.743932
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2148.00 0.581350 0.290675 0.956822i \(-0.406120\pi\)
0.290675 + 0.956822i \(0.406120\pi\)
\(240\) 0 0
\(241\) −3370.00 −0.900750 −0.450375 0.892839i \(-0.648710\pi\)
−0.450375 + 0.892839i \(0.648710\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4065.00 −1.06001
\(246\) 0 0
\(247\) 528.000 0.136016
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6134.00 −1.54253 −0.771264 0.636515i \(-0.780375\pi\)
−0.771264 + 0.636515i \(0.780375\pi\)
\(252\) 0 0
\(253\) 1008.00 0.250484
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4566.00 −1.10825 −0.554123 0.832435i \(-0.686946\pi\)
−0.554123 + 0.832435i \(0.686946\pi\)
\(258\) 0 0
\(259\) −4080.00 −0.978837
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1920.00 0.450161 0.225080 0.974340i \(-0.427736\pi\)
0.225080 + 0.974340i \(0.427736\pi\)
\(264\) 0 0
\(265\) −2710.00 −0.628204
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5802.00 −1.31507 −0.657536 0.753423i \(-0.728401\pi\)
−0.657536 + 0.753423i \(0.728401\pi\)
\(270\) 0 0
\(271\) −1640.00 −0.367612 −0.183806 0.982963i \(-0.558842\pi\)
−0.183806 + 0.982963i \(0.558842\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −450.000 −0.0986764
\(276\) 0 0
\(277\) −2792.00 −0.605614 −0.302807 0.953052i \(-0.597924\pi\)
−0.302807 + 0.953052i \(0.597924\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1108.00 0.235223 0.117612 0.993060i \(-0.462476\pi\)
0.117612 + 0.993060i \(0.462476\pi\)
\(282\) 0 0
\(283\) −6028.00 −1.26617 −0.633087 0.774080i \(-0.718213\pi\)
−0.633087 + 0.774080i \(0.718213\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2720.00 −0.559430
\(288\) 0 0
\(289\) 6323.00 1.28699
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7994.00 1.59391 0.796953 0.604041i \(-0.206444\pi\)
0.796953 + 0.604041i \(0.206444\pi\)
\(294\) 0 0
\(295\) −870.000 −0.171706
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −672.000 −0.129976
\(300\) 0 0
\(301\) 18224.0 3.48975
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −930.000 −0.174596
\(306\) 0 0
\(307\) −736.000 −0.136827 −0.0684133 0.997657i \(-0.521794\pi\)
−0.0684133 + 0.997657i \(0.521794\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5380.00 0.980938 0.490469 0.871459i \(-0.336825\pi\)
0.490469 + 0.871459i \(0.336825\pi\)
\(312\) 0 0
\(313\) −1370.00 −0.247402 −0.123701 0.992320i \(-0.539476\pi\)
−0.123701 + 0.992320i \(0.539476\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5770.00 1.02232 0.511160 0.859486i \(-0.329216\pi\)
0.511160 + 0.859486i \(0.329216\pi\)
\(318\) 0 0
\(319\) −4860.00 −0.853002
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4664.00 −0.803442
\(324\) 0 0
\(325\) 300.000 0.0512031
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18224.0 −3.05387
\(330\) 0 0
\(331\) 4172.00 0.692791 0.346396 0.938089i \(-0.387406\pi\)
0.346396 + 0.938089i \(0.387406\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1660.00 0.270733
\(336\) 0 0
\(337\) 8206.00 1.32644 0.663219 0.748426i \(-0.269190\pi\)
0.663219 + 0.748426i \(0.269190\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3672.00 0.583138
\(342\) 0 0
\(343\) −15980.0 −2.51557
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10848.0 −1.67825 −0.839123 0.543942i \(-0.816931\pi\)
−0.839123 + 0.543942i \(0.816931\pi\)
\(348\) 0 0
\(349\) −1694.00 −0.259822 −0.129911 0.991526i \(-0.541469\pi\)
−0.129911 + 0.991526i \(0.541469\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6642.00 −1.00147 −0.500734 0.865601i \(-0.666936\pi\)
−0.500734 + 0.865601i \(0.666936\pi\)
\(354\) 0 0
\(355\) −660.000 −0.0986737
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10376.0 1.52542 0.762708 0.646743i \(-0.223869\pi\)
0.762708 + 0.646743i \(0.223869\pi\)
\(360\) 0 0
\(361\) −4923.00 −0.717743
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3010.00 0.431645
\(366\) 0 0
\(367\) 2198.00 0.312629 0.156314 0.987707i \(-0.450039\pi\)
0.156314 + 0.987707i \(0.450039\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18428.0 −2.57880
\(372\) 0 0
\(373\) −12220.0 −1.69632 −0.848160 0.529740i \(-0.822290\pi\)
−0.848160 + 0.529740i \(0.822290\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3240.00 0.442622
\(378\) 0 0
\(379\) 10388.0 1.40790 0.703952 0.710247i \(-0.251417\pi\)
0.703952 + 0.710247i \(0.251417\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10552.0 −1.40779 −0.703893 0.710306i \(-0.748557\pi\)
−0.703893 + 0.710306i \(0.748557\pi\)
\(384\) 0 0
\(385\) −3060.00 −0.405070
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8262.00 −1.07686 −0.538432 0.842669i \(-0.680983\pi\)
−0.538432 + 0.842669i \(0.680983\pi\)
\(390\) 0 0
\(391\) 5936.00 0.767766
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2740.00 −0.349024
\(396\) 0 0
\(397\) 2864.00 0.362066 0.181033 0.983477i \(-0.442056\pi\)
0.181033 + 0.983477i \(0.442056\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12588.0 −1.56762 −0.783809 0.621002i \(-0.786726\pi\)
−0.783809 + 0.621002i \(0.786726\pi\)
\(402\) 0 0
\(403\) −2448.00 −0.302589
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2160.00 −0.263064
\(408\) 0 0
\(409\) 10330.0 1.24886 0.624432 0.781079i \(-0.285330\pi\)
0.624432 + 0.781079i \(0.285330\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5916.00 −0.704860
\(414\) 0 0
\(415\) −2460.00 −0.290980
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1250.00 0.145743 0.0728717 0.997341i \(-0.476784\pi\)
0.0728717 + 0.997341i \(0.476784\pi\)
\(420\) 0 0
\(421\) 5670.00 0.656387 0.328193 0.944611i \(-0.393560\pi\)
0.328193 + 0.944611i \(0.393560\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2650.00 −0.302456
\(426\) 0 0
\(427\) −6324.00 −0.716721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12976.0 1.45019 0.725095 0.688649i \(-0.241796\pi\)
0.725095 + 0.688649i \(0.241796\pi\)
\(432\) 0 0
\(433\) −9050.00 −1.00442 −0.502212 0.864745i \(-0.667480\pi\)
−0.502212 + 0.864745i \(0.667480\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2464.00 −0.269723
\(438\) 0 0
\(439\) 17528.0 1.90562 0.952808 0.303572i \(-0.0981794\pi\)
0.952808 + 0.303572i \(0.0981794\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2568.00 −0.275416 −0.137708 0.990473i \(-0.543974\pi\)
−0.137708 + 0.990473i \(0.543974\pi\)
\(444\) 0 0
\(445\) 5260.00 0.560332
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12652.0 1.32981 0.664905 0.746928i \(-0.268472\pi\)
0.664905 + 0.746928i \(0.268472\pi\)
\(450\) 0 0
\(451\) −1440.00 −0.150348
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2040.00 0.210190
\(456\) 0 0
\(457\) −6230.00 −0.637696 −0.318848 0.947806i \(-0.603296\pi\)
−0.318848 + 0.947806i \(0.603296\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5290.00 0.534447 0.267223 0.963635i \(-0.413894\pi\)
0.267223 + 0.963635i \(0.413894\pi\)
\(462\) 0 0
\(463\) −8110.00 −0.814047 −0.407023 0.913418i \(-0.633433\pi\)
−0.407023 + 0.913418i \(0.633433\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2020.00 0.200159 0.100080 0.994979i \(-0.468090\pi\)
0.100080 + 0.994979i \(0.468090\pi\)
\(468\) 0 0
\(469\) 11288.0 1.11137
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9648.00 0.937876
\(474\) 0 0
\(475\) 1100.00 0.106256
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9684.00 0.923744 0.461872 0.886947i \(-0.347178\pi\)
0.461872 + 0.886947i \(0.347178\pi\)
\(480\) 0 0
\(481\) 1440.00 0.136504
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2410.00 −0.225634
\(486\) 0 0
\(487\) 18426.0 1.71450 0.857250 0.514900i \(-0.172171\pi\)
0.857250 + 0.514900i \(0.172171\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4558.00 −0.418940 −0.209470 0.977815i \(-0.567174\pi\)
−0.209470 + 0.977815i \(0.567174\pi\)
\(492\) 0 0
\(493\) −28620.0 −2.61456
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4488.00 −0.405059
\(498\) 0 0
\(499\) 460.000 0.0412674 0.0206337 0.999787i \(-0.493432\pi\)
0.0206337 + 0.999787i \(0.493432\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8568.00 0.759499 0.379750 0.925089i \(-0.376010\pi\)
0.379750 + 0.925089i \(0.376010\pi\)
\(504\) 0 0
\(505\) −6070.00 −0.534874
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16374.0 1.42586 0.712932 0.701233i \(-0.247367\pi\)
0.712932 + 0.701233i \(0.247367\pi\)
\(510\) 0 0
\(511\) 20468.0 1.77192
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4490.00 0.384181
\(516\) 0 0
\(517\) −9648.00 −0.820732
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21620.0 1.81802 0.909011 0.416772i \(-0.136839\pi\)
0.909011 + 0.416772i \(0.136839\pi\)
\(522\) 0 0
\(523\) −16524.0 −1.38154 −0.690769 0.723076i \(-0.742728\pi\)
−0.690769 + 0.723076i \(0.742728\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21624.0 1.78739
\(528\) 0 0
\(529\) −9031.00 −0.742254
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 960.000 0.0780154
\(534\) 0 0
\(535\) 6820.00 0.551130
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14634.0 −1.16945
\(540\) 0 0
\(541\) −4990.00 −0.396556 −0.198278 0.980146i \(-0.563535\pi\)
−0.198278 + 0.980146i \(0.563535\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1090.00 −0.0856706
\(546\) 0 0
\(547\) 15224.0 1.19000 0.595001 0.803725i \(-0.297152\pi\)
0.595001 + 0.803725i \(0.297152\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11880.0 0.918521
\(552\) 0 0
\(553\) −18632.0 −1.43275
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5698.00 −0.433451 −0.216725 0.976233i \(-0.569538\pi\)
−0.216725 + 0.976233i \(0.569538\pi\)
\(558\) 0 0
\(559\) −6432.00 −0.486663
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5976.00 −0.447351 −0.223675 0.974664i \(-0.571806\pi\)
−0.223675 + 0.974664i \(0.571806\pi\)
\(564\) 0 0
\(565\) −6930.00 −0.516013
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16460.0 1.21272 0.606361 0.795189i \(-0.292629\pi\)
0.606361 + 0.795189i \(0.292629\pi\)
\(570\) 0 0
\(571\) 18236.0 1.33652 0.668260 0.743928i \(-0.267039\pi\)
0.668260 + 0.743928i \(0.267039\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1400.00 −0.101537
\(576\) 0 0
\(577\) 20842.0 1.50375 0.751875 0.659306i \(-0.229150\pi\)
0.751875 + 0.659306i \(0.229150\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16728.0 −1.19448
\(582\) 0 0
\(583\) −9756.00 −0.693057
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11772.0 0.827738 0.413869 0.910336i \(-0.364177\pi\)
0.413869 + 0.910336i \(0.364177\pi\)
\(588\) 0 0
\(589\) −8976.00 −0.627928
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4514.00 0.312593 0.156297 0.987710i \(-0.450044\pi\)
0.156297 + 0.987710i \(0.450044\pi\)
\(594\) 0 0
\(595\) −18020.0 −1.24159
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25096.0 −1.71184 −0.855922 0.517105i \(-0.827010\pi\)
−0.855922 + 0.517105i \(0.827010\pi\)
\(600\) 0 0
\(601\) 16262.0 1.10373 0.551864 0.833934i \(-0.313917\pi\)
0.551864 + 0.833934i \(0.313917\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5035.00 0.338350
\(606\) 0 0
\(607\) −2262.00 −0.151255 −0.0756275 0.997136i \(-0.524096\pi\)
−0.0756275 + 0.997136i \(0.524096\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6432.00 0.425877
\(612\) 0 0
\(613\) 14216.0 0.936670 0.468335 0.883551i \(-0.344854\pi\)
0.468335 + 0.883551i \(0.344854\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2558.00 0.166906 0.0834532 0.996512i \(-0.473405\pi\)
0.0834532 + 0.996512i \(0.473405\pi\)
\(618\) 0 0
\(619\) 17044.0 1.10671 0.553357 0.832944i \(-0.313346\pi\)
0.553357 + 0.832944i \(0.313346\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 35768.0 2.30018
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12720.0 −0.806327
\(630\) 0 0
\(631\) −20980.0 −1.32361 −0.661807 0.749674i \(-0.730210\pi\)
−0.661807 + 0.749674i \(0.730210\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4070.00 −0.254351
\(636\) 0 0
\(637\) 9756.00 0.606824
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7176.00 0.442176 0.221088 0.975254i \(-0.429039\pi\)
0.221088 + 0.975254i \(0.429039\pi\)
\(642\) 0 0
\(643\) 2724.00 0.167067 0.0835335 0.996505i \(-0.473379\pi\)
0.0835335 + 0.996505i \(0.473379\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10392.0 0.631455 0.315728 0.948850i \(-0.397751\pi\)
0.315728 + 0.948850i \(0.397751\pi\)
\(648\) 0 0
\(649\) −3132.00 −0.189433
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11958.0 −0.716620 −0.358310 0.933603i \(-0.616647\pi\)
−0.358310 + 0.933603i \(0.616647\pi\)
\(654\) 0 0
\(655\) −6410.00 −0.382381
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13366.0 −0.790084 −0.395042 0.918663i \(-0.629270\pi\)
−0.395042 + 0.918663i \(0.629270\pi\)
\(660\) 0 0
\(661\) 14698.0 0.864880 0.432440 0.901663i \(-0.357653\pi\)
0.432440 + 0.901663i \(0.357653\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7480.00 0.436183
\(666\) 0 0
\(667\) −15120.0 −0.877734
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3348.00 −0.192620
\(672\) 0 0
\(673\) −7570.00 −0.433584 −0.216792 0.976218i \(-0.569559\pi\)
−0.216792 + 0.976218i \(0.569559\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21378.0 1.21362 0.606812 0.794845i \(-0.292448\pi\)
0.606812 + 0.794845i \(0.292448\pi\)
\(678\) 0 0
\(679\) −16388.0 −0.926235
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15804.0 0.885393 0.442696 0.896672i \(-0.354022\pi\)
0.442696 + 0.896672i \(0.354022\pi\)
\(684\) 0 0
\(685\) −15330.0 −0.855079
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6504.00 0.359627
\(690\) 0 0
\(691\) 22028.0 1.21271 0.606356 0.795193i \(-0.292630\pi\)
0.606356 + 0.795193i \(0.292630\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6660.00 −0.363494
\(696\) 0 0
\(697\) −8480.00 −0.460836
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1762.00 −0.0949356 −0.0474678 0.998873i \(-0.515115\pi\)
−0.0474678 + 0.998873i \(0.515115\pi\)
\(702\) 0 0
\(703\) 5280.00 0.283270
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −41276.0 −2.19568
\(708\) 0 0
\(709\) −2474.00 −0.131048 −0.0655240 0.997851i \(-0.520872\pi\)
−0.0655240 + 0.997851i \(0.520872\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11424.0 0.600045
\(714\) 0 0
\(715\) 1080.00 0.0564891
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32040.0 1.66188 0.830939 0.556363i \(-0.187804\pi\)
0.830939 + 0.556363i \(0.187804\pi\)
\(720\) 0 0
\(721\) 30532.0 1.57708
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6750.00 0.345778
\(726\) 0 0
\(727\) 12874.0 0.656768 0.328384 0.944544i \(-0.393496\pi\)
0.328384 + 0.944544i \(0.393496\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 56816.0 2.87471
\(732\) 0 0
\(733\) 28208.0 1.42140 0.710700 0.703495i \(-0.248378\pi\)
0.710700 + 0.703495i \(0.248378\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5976.00 0.298682
\(738\) 0 0
\(739\) −29068.0 −1.44693 −0.723467 0.690359i \(-0.757452\pi\)
−0.723467 + 0.690359i \(0.757452\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28152.0 1.39004 0.695018 0.718992i \(-0.255396\pi\)
0.695018 + 0.718992i \(0.255396\pi\)
\(744\) 0 0
\(745\) 7350.00 0.361454
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 46376.0 2.26241
\(750\) 0 0
\(751\) 29916.0 1.45360 0.726798 0.686851i \(-0.241008\pi\)
0.726798 + 0.686851i \(0.241008\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12960.0 −0.624719
\(756\) 0 0
\(757\) 32904.0 1.57981 0.789905 0.613229i \(-0.210130\pi\)
0.789905 + 0.613229i \(0.210130\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21764.0 −1.03672 −0.518360 0.855162i \(-0.673457\pi\)
−0.518360 + 0.855162i \(0.673457\pi\)
\(762\) 0 0
\(763\) −7412.00 −0.351681
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2088.00 0.0982964
\(768\) 0 0
\(769\) −3570.00 −0.167409 −0.0837045 0.996491i \(-0.526675\pi\)
−0.0837045 + 0.996491i \(0.526675\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19486.0 −0.906679 −0.453339 0.891338i \(-0.649767\pi\)
−0.453339 + 0.891338i \(0.649767\pi\)
\(774\) 0 0
\(775\) −5100.00 −0.236384
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3520.00 0.161896
\(780\) 0 0
\(781\) −2376.00 −0.108860
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16660.0 0.757479
\(786\) 0 0
\(787\) −19764.0 −0.895185 −0.447592 0.894238i \(-0.647718\pi\)
−0.447592 + 0.894238i \(0.647718\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −47124.0 −2.11825
\(792\) 0 0
\(793\) 2232.00 0.0999504
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14390.0 0.639548 0.319774 0.947494i \(-0.396393\pi\)
0.319774 + 0.947494i \(0.396393\pi\)
\(798\) 0 0
\(799\) −56816.0 −2.51565
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10836.0 0.476207
\(804\) 0 0
\(805\) −9520.00 −0.416815
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28536.0 1.24014 0.620069 0.784547i \(-0.287104\pi\)
0.620069 + 0.784547i \(0.287104\pi\)
\(810\) 0 0
\(811\) −27732.0 −1.20074 −0.600371 0.799721i \(-0.704981\pi\)
−0.600371 + 0.799721i \(0.704981\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3740.00 −0.160744
\(816\) 0 0
\(817\) −23584.0 −1.00991
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8086.00 0.343731 0.171866 0.985120i \(-0.445021\pi\)
0.171866 + 0.985120i \(0.445021\pi\)
\(822\) 0 0
\(823\) −39854.0 −1.68800 −0.843999 0.536344i \(-0.819805\pi\)
−0.843999 + 0.536344i \(0.819805\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17752.0 0.746430 0.373215 0.927745i \(-0.378255\pi\)
0.373215 + 0.927745i \(0.378255\pi\)
\(828\) 0 0
\(829\) 23858.0 0.999545 0.499772 0.866157i \(-0.333417\pi\)
0.499772 + 0.866157i \(0.333417\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −86178.0 −3.58450
\(834\) 0 0
\(835\) −12800.0 −0.530494
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13888.0 −0.571474 −0.285737 0.958308i \(-0.592238\pi\)
−0.285737 + 0.958308i \(0.592238\pi\)
\(840\) 0 0
\(841\) 48511.0 1.98905
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10265.0 0.417901
\(846\) 0 0
\(847\) 34238.0 1.38894
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6720.00 −0.270692
\(852\) 0 0
\(853\) −16568.0 −0.665038 −0.332519 0.943097i \(-0.607899\pi\)
−0.332519 + 0.943097i \(0.607899\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13034.0 −0.519525 −0.259763 0.965673i \(-0.583644\pi\)
−0.259763 + 0.965673i \(0.583644\pi\)
\(858\) 0 0
\(859\) 34356.0 1.36462 0.682312 0.731061i \(-0.260975\pi\)
0.682312 + 0.731061i \(0.260975\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16016.0 −0.631739 −0.315870 0.948803i \(-0.602296\pi\)
−0.315870 + 0.948803i \(0.602296\pi\)
\(864\) 0 0
\(865\) −6030.00 −0.237024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9864.00 −0.385056
\(870\) 0 0
\(871\) −3984.00 −0.154986
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4250.00 0.164201
\(876\) 0 0
\(877\) 19780.0 0.761600 0.380800 0.924657i \(-0.375649\pi\)
0.380800 + 0.924657i \(0.375649\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41036.0 −1.56928 −0.784641 0.619950i \(-0.787153\pi\)
−0.784641 + 0.619950i \(0.787153\pi\)
\(882\) 0 0
\(883\) 35108.0 1.33803 0.669014 0.743250i \(-0.266717\pi\)
0.669014 + 0.743250i \(0.266717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18648.0 −0.705906 −0.352953 0.935641i \(-0.614822\pi\)
−0.352953 + 0.935641i \(0.614822\pi\)
\(888\) 0 0
\(889\) −27676.0 −1.04412
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23584.0 0.883772
\(894\) 0 0
\(895\) −8470.00 −0.316336
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −55080.0 −2.04340
\(900\) 0 0
\(901\) −57452.0 −2.12431
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18610.0 −0.683555
\(906\) 0 0
\(907\) −21688.0 −0.793978 −0.396989 0.917823i \(-0.629945\pi\)
−0.396989 + 0.917823i \(0.629945\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42064.0 1.52979 0.764897 0.644153i \(-0.222790\pi\)
0.764897 + 0.644153i \(0.222790\pi\)
\(912\) 0 0
\(913\) −8856.00 −0.321020
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −43588.0 −1.56969
\(918\) 0 0
\(919\) 44420.0 1.59443 0.797215 0.603696i \(-0.206306\pi\)
0.797215 + 0.603696i \(0.206306\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1584.00 0.0564875
\(924\) 0 0
\(925\) 3000.00 0.106637
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17124.0 −0.604758 −0.302379 0.953188i \(-0.597781\pi\)
−0.302379 + 0.953188i \(0.597781\pi\)
\(930\) 0 0
\(931\) 35772.0 1.25927
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9540.00 −0.333681
\(936\) 0 0
\(937\) −11110.0 −0.387351 −0.193675 0.981066i \(-0.562041\pi\)
−0.193675 + 0.981066i \(0.562041\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12962.0 0.449043 0.224521 0.974469i \(-0.427918\pi\)
0.224521 + 0.974469i \(0.427918\pi\)
\(942\) 0 0
\(943\) −4480.00 −0.154707
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25672.0 0.880916 0.440458 0.897773i \(-0.354816\pi\)
0.440458 + 0.897773i \(0.354816\pi\)
\(948\) 0 0
\(949\) −7224.00 −0.247103
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2082.00 0.0707687 0.0353844 0.999374i \(-0.488734\pi\)
0.0353844 + 0.999374i \(0.488734\pi\)
\(954\) 0 0
\(955\) 14180.0 0.480475
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −104244. −3.51013
\(960\) 0 0
\(961\) 11825.0 0.396932
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1170.00 0.0390297
\(966\) 0 0
\(967\) −5666.00 −0.188424 −0.0942121 0.995552i \(-0.530033\pi\)
−0.0942121 + 0.995552i \(0.530033\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28622.0 −0.945956 −0.472978 0.881074i \(-0.656821\pi\)
−0.472978 + 0.881074i \(0.656821\pi\)
\(972\) 0 0
\(973\) −45288.0 −1.49215
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −24586.0 −0.805093 −0.402546 0.915400i \(-0.631875\pi\)
−0.402546 + 0.915400i \(0.631875\pi\)
\(978\) 0 0
\(979\) 18936.0 0.618179
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −40632.0 −1.31837 −0.659186 0.751980i \(-0.729099\pi\)
−0.659186 + 0.751980i \(0.729099\pi\)
\(984\) 0 0
\(985\) 19070.0 0.616874
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30016.0 0.965069
\(990\) 0 0
\(991\) −8768.00 −0.281054 −0.140527 0.990077i \(-0.544880\pi\)
−0.140527 + 0.990077i \(0.544880\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11760.0 0.374691
\(996\) 0 0
\(997\) 37212.0 1.18206 0.591031 0.806649i \(-0.298721\pi\)
0.591031 + 0.806649i \(0.298721\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.a.a.1.1 1
3.2 odd 2 720.4.a.p.1.1 1
4.3 odd 2 360.4.a.g.1.1 1
12.11 even 2 360.4.a.o.1.1 yes 1
20.3 even 4 1800.4.f.o.649.1 2
20.7 even 4 1800.4.f.o.649.2 2
20.19 odd 2 1800.4.a.b.1.1 1
60.23 odd 4 1800.4.f.i.649.1 2
60.47 odd 4 1800.4.f.i.649.2 2
60.59 even 2 1800.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.a.g.1.1 1 4.3 odd 2
360.4.a.o.1.1 yes 1 12.11 even 2
720.4.a.a.1.1 1 1.1 even 1 trivial
720.4.a.p.1.1 1 3.2 odd 2
1800.4.a.a.1.1 1 60.59 even 2
1800.4.a.b.1.1 1 20.19 odd 2
1800.4.f.i.649.1 2 60.23 odd 4
1800.4.f.i.649.2 2 60.47 odd 4
1800.4.f.o.649.1 2 20.3 even 4
1800.4.f.o.649.2 2 20.7 even 4