Properties

Label 720.3.l.a.161.1
Level $720$
Weight $3$
Character 720.161
Analytic conductor $19.619$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,3,Mod(161,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(1.58114 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 720.161
Dual form 720.3.l.a.161.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607i q^{5} -7.16228 q^{7} +5.42736i q^{11} +9.81139 q^{13} +12.2317i q^{17} -6.32456 q^{19} -12.0394i q^{23} -5.00000 q^{25} +44.9881i q^{29} +58.2719 q^{31} +16.0153i q^{35} +66.4605 q^{37} -16.4743i q^{41} +43.6228 q^{43} +40.0570i q^{47} +2.29822 q^{49} -13.2242i q^{53} +12.1359 q^{55} +25.1519i q^{59} -35.6754 q^{61} -21.9389i q^{65} -26.7018 q^{67} +92.7301i q^{71} +60.3246 q^{73} -38.8723i q^{77} +96.2192 q^{79} -79.1215i q^{83} +27.3509 q^{85} +107.443i q^{89} -70.2719 q^{91} +14.1421i q^{95} -1.07900 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{7} - 24 q^{13} - 20 q^{25} + 56 q^{31} + 152 q^{37} + 48 q^{43} - 92 q^{49} - 40 q^{55} - 168 q^{61} - 208 q^{67} + 216 q^{73} + 56 q^{79} + 160 q^{85} - 104 q^{91} - 232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.23607i − 0.447214i
\(6\) 0 0
\(7\) −7.16228 −1.02318 −0.511591 0.859229i \(-0.670944\pi\)
−0.511591 + 0.859229i \(0.670944\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.42736i 0.493396i 0.969092 + 0.246698i \(0.0793456\pi\)
−0.969092 + 0.246698i \(0.920654\pi\)
\(12\) 0 0
\(13\) 9.81139 0.754722 0.377361 0.926066i \(-0.376832\pi\)
0.377361 + 0.926066i \(0.376832\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 12.2317i 0.719511i 0.933047 + 0.359756i \(0.117140\pi\)
−0.933047 + 0.359756i \(0.882860\pi\)
\(18\) 0 0
\(19\) −6.32456 −0.332871 −0.166436 0.986052i \(-0.553226\pi\)
−0.166436 + 0.986052i \(0.553226\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 12.0394i − 0.523454i −0.965142 0.261727i \(-0.915708\pi\)
0.965142 0.261727i \(-0.0842920\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 44.9881i 1.55131i 0.631155 + 0.775657i \(0.282581\pi\)
−0.631155 + 0.775657i \(0.717419\pi\)
\(30\) 0 0
\(31\) 58.2719 1.87974 0.939869 0.341535i \(-0.110947\pi\)
0.939869 + 0.341535i \(0.110947\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 16.0153i 0.457581i
\(36\) 0 0
\(37\) 66.4605 1.79623 0.898115 0.439761i \(-0.144937\pi\)
0.898115 + 0.439761i \(0.144937\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 16.4743i − 0.401813i −0.979610 0.200906i \(-0.935611\pi\)
0.979610 0.200906i \(-0.0643887\pi\)
\(42\) 0 0
\(43\) 43.6228 1.01448 0.507242 0.861804i \(-0.330665\pi\)
0.507242 + 0.861804i \(0.330665\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 40.0570i 0.852276i 0.904658 + 0.426138i \(0.140126\pi\)
−0.904658 + 0.426138i \(0.859874\pi\)
\(48\) 0 0
\(49\) 2.29822 0.0469025
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 13.2242i − 0.249512i −0.992187 0.124756i \(-0.960185\pi\)
0.992187 0.124756i \(-0.0398149\pi\)
\(54\) 0 0
\(55\) 12.1359 0.220654
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 25.1519i 0.426303i 0.977019 + 0.213151i \(0.0683728\pi\)
−0.977019 + 0.213151i \(0.931627\pi\)
\(60\) 0 0
\(61\) −35.6754 −0.584843 −0.292422 0.956289i \(-0.594461\pi\)
−0.292422 + 0.956289i \(0.594461\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 21.9389i − 0.337522i
\(66\) 0 0
\(67\) −26.7018 −0.398534 −0.199267 0.979945i \(-0.563856\pi\)
−0.199267 + 0.979945i \(0.563856\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 92.7301i 1.30606i 0.757333 + 0.653029i \(0.226502\pi\)
−0.757333 + 0.653029i \(0.773498\pi\)
\(72\) 0 0
\(73\) 60.3246 0.826364 0.413182 0.910649i \(-0.364417\pi\)
0.413182 + 0.910649i \(0.364417\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 38.8723i − 0.504834i
\(78\) 0 0
\(79\) 96.2192 1.21796 0.608982 0.793184i \(-0.291578\pi\)
0.608982 + 0.793184i \(0.291578\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 79.1215i − 0.953271i −0.879101 0.476635i \(-0.841856\pi\)
0.879101 0.476635i \(-0.158144\pi\)
\(84\) 0 0
\(85\) 27.3509 0.321775
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 107.443i 1.20722i 0.797278 + 0.603612i \(0.206272\pi\)
−0.797278 + 0.603612i \(0.793728\pi\)
\(90\) 0 0
\(91\) −70.2719 −0.772219
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 14.1421i 0.148865i
\(96\) 0 0
\(97\) −1.07900 −0.0111237 −0.00556187 0.999985i \(-0.501770\pi\)
−0.00556187 + 0.999985i \(0.501770\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 170.282i 1.68596i 0.537942 + 0.842982i \(0.319202\pi\)
−0.537942 + 0.842982i \(0.680798\pi\)
\(102\) 0 0
\(103\) 128.460 1.24719 0.623595 0.781748i \(-0.285672\pi\)
0.623595 + 0.781748i \(0.285672\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 76.3675i 0.713715i 0.934159 + 0.356858i \(0.116152\pi\)
−0.934159 + 0.356858i \(0.883848\pi\)
\(108\) 0 0
\(109\) −13.0790 −0.119991 −0.0599954 0.998199i \(-0.519109\pi\)
−0.0599954 + 0.998199i \(0.519109\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.7170i 0.183336i 0.995790 + 0.0916680i \(0.0292199\pi\)
−0.995790 + 0.0916680i \(0.970780\pi\)
\(114\) 0 0
\(115\) −26.9210 −0.234096
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 87.6068i − 0.736191i
\(120\) 0 0
\(121\) 91.5438 0.756560
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 38.0306 0.299454 0.149727 0.988727i \(-0.452161\pi\)
0.149727 + 0.988727i \(0.452161\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 83.9409i − 0.640770i −0.947287 0.320385i \(-0.896188\pi\)
0.947287 0.320385i \(-0.103812\pi\)
\(132\) 0 0
\(133\) 45.2982 0.340588
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 15.5936i − 0.113822i −0.998379 0.0569109i \(-0.981875\pi\)
0.998379 0.0569109i \(-0.0181251\pi\)
\(138\) 0 0
\(139\) −67.8420 −0.488072 −0.244036 0.969766i \(-0.578471\pi\)
−0.244036 + 0.969766i \(0.578471\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 53.2499i 0.372377i
\(144\) 0 0
\(145\) 100.596 0.693769
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 233.426i − 1.56662i −0.621634 0.783308i \(-0.713531\pi\)
0.621634 0.783308i \(-0.286469\pi\)
\(150\) 0 0
\(151\) −185.351 −1.22749 −0.613745 0.789505i \(-0.710338\pi\)
−0.613745 + 0.789505i \(0.710338\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 130.300i − 0.840645i
\(156\) 0 0
\(157\) −111.276 −0.708765 −0.354383 0.935100i \(-0.615309\pi\)
−0.354383 + 0.935100i \(0.615309\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 86.2298i 0.535589i
\(162\) 0 0
\(163\) −118.763 −0.728607 −0.364304 0.931280i \(-0.618693\pi\)
−0.364304 + 0.931280i \(0.618693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 221.194i 1.32452i 0.749276 + 0.662258i \(0.230402\pi\)
−0.749276 + 0.662258i \(0.769598\pi\)
\(168\) 0 0
\(169\) −72.7367 −0.430394
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 190.807i − 1.10293i −0.834198 0.551466i \(-0.814069\pi\)
0.834198 0.551466i \(-0.185931\pi\)
\(174\) 0 0
\(175\) 35.8114 0.204637
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 58.1005i − 0.324584i −0.986743 0.162292i \(-0.948111\pi\)
0.986743 0.162292i \(-0.0518886\pi\)
\(180\) 0 0
\(181\) −162.921 −0.900116 −0.450058 0.892999i \(-0.648597\pi\)
−0.450058 + 0.892999i \(0.648597\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 148.610i − 0.803298i
\(186\) 0 0
\(187\) −66.3858 −0.355004
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 100.062i 0.523884i 0.965084 + 0.261942i \(0.0843630\pi\)
−0.965084 + 0.261942i \(0.915637\pi\)
\(192\) 0 0
\(193\) −61.8947 −0.320698 −0.160349 0.987060i \(-0.551262\pi\)
−0.160349 + 0.987060i \(0.551262\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.8791i 0.126290i 0.998004 + 0.0631449i \(0.0201130\pi\)
−0.998004 + 0.0631449i \(0.979887\pi\)
\(198\) 0 0
\(199\) 156.491 0.786387 0.393194 0.919456i \(-0.371370\pi\)
0.393194 + 0.919456i \(0.371370\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 322.217i − 1.58728i
\(204\) 0 0
\(205\) −36.8377 −0.179696
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 34.3256i − 0.164237i
\(210\) 0 0
\(211\) −237.789 −1.12696 −0.563482 0.826128i \(-0.690539\pi\)
−0.563482 + 0.826128i \(0.690539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 97.5435i − 0.453691i
\(216\) 0 0
\(217\) −417.359 −1.92332
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 120.010i 0.543031i
\(222\) 0 0
\(223\) 182.302 0.817500 0.408750 0.912646i \(-0.365965\pi\)
0.408750 + 0.912646i \(0.365965\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 406.078i − 1.78889i −0.447180 0.894444i \(-0.647572\pi\)
0.447180 0.894444i \(-0.352428\pi\)
\(228\) 0 0
\(229\) −27.2982 −0.119206 −0.0596031 0.998222i \(-0.518984\pi\)
−0.0596031 + 0.998222i \(0.518984\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 356.382i − 1.52954i −0.644306 0.764768i \(-0.722854\pi\)
0.644306 0.764768i \(-0.277146\pi\)
\(234\) 0 0
\(235\) 89.5701 0.381149
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 271.690i 1.13678i 0.822760 + 0.568389i \(0.192433\pi\)
−0.822760 + 0.568389i \(0.807567\pi\)
\(240\) 0 0
\(241\) −224.438 −0.931280 −0.465640 0.884974i \(-0.654176\pi\)
−0.465640 + 0.884974i \(0.654176\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 5.13898i − 0.0209754i
\(246\) 0 0
\(247\) −62.0527 −0.251225
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 318.775i 1.27002i 0.772504 + 0.635010i \(0.219004\pi\)
−0.772504 + 0.635010i \(0.780996\pi\)
\(252\) 0 0
\(253\) 65.3423 0.258270
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 371.975i 1.44738i 0.690128 + 0.723688i \(0.257554\pi\)
−0.690128 + 0.723688i \(0.742446\pi\)
\(258\) 0 0
\(259\) −476.009 −1.83787
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 238.549i − 0.907031i −0.891248 0.453515i \(-0.850170\pi\)
0.891248 0.453515i \(-0.149830\pi\)
\(264\) 0 0
\(265\) −29.5701 −0.111585
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 125.871i 0.467922i 0.972246 + 0.233961i \(0.0751688\pi\)
−0.972246 + 0.233961i \(0.924831\pi\)
\(270\) 0 0
\(271\) 258.649 0.954425 0.477212 0.878788i \(-0.341647\pi\)
0.477212 + 0.878788i \(0.341647\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 27.1368i − 0.0986793i
\(276\) 0 0
\(277\) 227.715 0.822074 0.411037 0.911619i \(-0.365167\pi\)
0.411037 + 0.911619i \(0.365167\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 241.384i − 0.859016i −0.903063 0.429508i \(-0.858687\pi\)
0.903063 0.429508i \(-0.141313\pi\)
\(282\) 0 0
\(283\) −208.333 −0.736159 −0.368080 0.929794i \(-0.619985\pi\)
−0.368080 + 0.929794i \(0.619985\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 117.994i 0.411128i
\(288\) 0 0
\(289\) 139.386 0.482304
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 201.693i − 0.688372i −0.938901 0.344186i \(-0.888155\pi\)
0.938901 0.344186i \(-0.111845\pi\)
\(294\) 0 0
\(295\) 56.2413 0.190648
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 118.124i − 0.395062i
\(300\) 0 0
\(301\) −312.438 −1.03800
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 79.7727i 0.261550i
\(306\) 0 0
\(307\) −342.824 −1.11669 −0.558346 0.829608i \(-0.688564\pi\)
−0.558346 + 0.829608i \(0.688564\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 217.640i 0.699807i 0.936786 + 0.349903i \(0.113786\pi\)
−0.936786 + 0.349903i \(0.886214\pi\)
\(312\) 0 0
\(313\) 281.895 0.900622 0.450311 0.892872i \(-0.351313\pi\)
0.450311 + 0.892872i \(0.351313\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.4013i 0.0485847i 0.999705 + 0.0242923i \(0.00773325\pi\)
−0.999705 + 0.0242923i \(0.992267\pi\)
\(318\) 0 0
\(319\) −244.167 −0.765412
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 77.3600i − 0.239505i
\(324\) 0 0
\(325\) −49.0569 −0.150944
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 286.899i − 0.872034i
\(330\) 0 0
\(331\) −375.517 −1.13449 −0.567247 0.823548i \(-0.691991\pi\)
−0.567247 + 0.823548i \(0.691991\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 59.7070i 0.178230i
\(336\) 0 0
\(337\) 188.114 0.558201 0.279101 0.960262i \(-0.409964\pi\)
0.279101 + 0.960262i \(0.409964\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 316.262i 0.927456i
\(342\) 0 0
\(343\) 334.491 0.975193
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 513.793i − 1.48067i −0.672237 0.740336i \(-0.734666\pi\)
0.672237 0.740336i \(-0.265334\pi\)
\(348\) 0 0
\(349\) 112.535 0.322451 0.161225 0.986918i \(-0.448455\pi\)
0.161225 + 0.986918i \(0.448455\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 428.172i − 1.21295i −0.795102 0.606475i \(-0.792583\pi\)
0.795102 0.606475i \(-0.207417\pi\)
\(354\) 0 0
\(355\) 207.351 0.584087
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 56.1961i 0.156535i 0.996932 + 0.0782676i \(0.0249389\pi\)
−0.996932 + 0.0782676i \(0.975061\pi\)
\(360\) 0 0
\(361\) −321.000 −0.889197
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 134.890i − 0.369561i
\(366\) 0 0
\(367\) 154.364 0.420610 0.210305 0.977636i \(-0.432554\pi\)
0.210305 + 0.977636i \(0.432554\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 94.7151i 0.255297i
\(372\) 0 0
\(373\) 557.285 1.49406 0.747030 0.664790i \(-0.231479\pi\)
0.747030 + 0.664790i \(0.231479\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 441.396i 1.17081i
\(378\) 0 0
\(379\) −147.404 −0.388928 −0.194464 0.980910i \(-0.562297\pi\)
−0.194464 + 0.980910i \(0.562297\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 736.619i − 1.92329i −0.274302 0.961644i \(-0.588447\pi\)
0.274302 0.961644i \(-0.411553\pi\)
\(384\) 0 0
\(385\) −86.9210 −0.225769
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 296.408i 0.761975i 0.924580 + 0.380987i \(0.124416\pi\)
−0.924580 + 0.380987i \(0.875584\pi\)
\(390\) 0 0
\(391\) 147.263 0.376631
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 215.153i − 0.544690i
\(396\) 0 0
\(397\) −457.057 −1.15128 −0.575638 0.817704i \(-0.695246\pi\)
−0.575638 + 0.817704i \(0.695246\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 391.141i 0.975415i 0.873007 + 0.487707i \(0.162167\pi\)
−0.873007 + 0.487707i \(0.837833\pi\)
\(402\) 0 0
\(403\) 571.728 1.41868
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 360.705i 0.886253i
\(408\) 0 0
\(409\) −411.842 −1.00695 −0.503474 0.864010i \(-0.667945\pi\)
−0.503474 + 0.864010i \(0.667945\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 180.145i − 0.436186i
\(414\) 0 0
\(415\) −176.921 −0.426316
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 653.447i 1.55954i 0.626066 + 0.779770i \(0.284664\pi\)
−0.626066 + 0.779770i \(0.715336\pi\)
\(420\) 0 0
\(421\) 125.035 0.296995 0.148497 0.988913i \(-0.452556\pi\)
0.148497 + 0.988913i \(0.452556\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 61.1584i − 0.143902i
\(426\) 0 0
\(427\) 255.517 0.598401
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 397.208i 0.921596i 0.887505 + 0.460798i \(0.152437\pi\)
−0.887505 + 0.460798i \(0.847563\pi\)
\(432\) 0 0
\(433\) 560.114 1.29357 0.646783 0.762674i \(-0.276114\pi\)
0.646783 + 0.762674i \(0.276114\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 76.1441i 0.174243i
\(438\) 0 0
\(439\) 664.386 1.51341 0.756704 0.653758i \(-0.226809\pi\)
0.756704 + 0.653758i \(0.226809\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 371.305i 0.838160i 0.907949 + 0.419080i \(0.137647\pi\)
−0.907949 + 0.419080i \(0.862353\pi\)
\(444\) 0 0
\(445\) 240.250 0.539887
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 585.471i 1.30395i 0.758243 + 0.651973i \(0.226058\pi\)
−0.758243 + 0.651973i \(0.773942\pi\)
\(450\) 0 0
\(451\) 89.4121 0.198253
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 157.133i 0.345347i
\(456\) 0 0
\(457\) 168.641 0.369017 0.184508 0.982831i \(-0.440931\pi\)
0.184508 + 0.982831i \(0.440931\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 298.492i − 0.647487i −0.946145 0.323744i \(-0.895058\pi\)
0.946145 0.323744i \(-0.104942\pi\)
\(462\) 0 0
\(463\) 595.285 1.28571 0.642856 0.765987i \(-0.277749\pi\)
0.642856 + 0.765987i \(0.277749\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 623.655i 1.33545i 0.744408 + 0.667725i \(0.232732\pi\)
−0.744408 + 0.667725i \(0.767268\pi\)
\(468\) 0 0
\(469\) 191.246 0.407773
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 236.756i 0.500542i
\(474\) 0 0
\(475\) 31.6228 0.0665743
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 131.857i − 0.275276i −0.990483 0.137638i \(-0.956049\pi\)
0.990483 0.137638i \(-0.0439510\pi\)
\(480\) 0 0
\(481\) 652.070 1.35565
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.41272i 0.00497468i
\(486\) 0 0
\(487\) −41.8028 −0.0858375 −0.0429187 0.999079i \(-0.513666\pi\)
−0.0429187 + 0.999079i \(0.513666\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 178.817i − 0.364189i −0.983281 0.182095i \(-0.941712\pi\)
0.983281 0.182095i \(-0.0582877\pi\)
\(492\) 0 0
\(493\) −550.280 −1.11619
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 664.159i − 1.33634i
\(498\) 0 0
\(499\) 39.0961 0.0783489 0.0391744 0.999232i \(-0.487527\pi\)
0.0391744 + 0.999232i \(0.487527\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 578.698i 1.15049i 0.817980 + 0.575247i \(0.195094\pi\)
−0.817980 + 0.575247i \(0.804906\pi\)
\(504\) 0 0
\(505\) 380.763 0.753986
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 355.743i − 0.698905i −0.936954 0.349453i \(-0.886368\pi\)
0.936954 0.349453i \(-0.113632\pi\)
\(510\) 0 0
\(511\) −432.061 −0.845521
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 287.246i − 0.557760i
\(516\) 0 0
\(517\) −217.404 −0.420510
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 810.952i 1.55653i 0.627936 + 0.778265i \(0.283900\pi\)
−0.627936 + 0.778265i \(0.716100\pi\)
\(522\) 0 0
\(523\) −720.483 −1.37760 −0.688798 0.724953i \(-0.741861\pi\)
−0.688798 + 0.724953i \(0.741861\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 712.764i 1.35249i
\(528\) 0 0
\(529\) 384.052 0.725996
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 161.636i − 0.303257i
\(534\) 0 0
\(535\) 170.763 0.319183
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.4733i 0.0231415i
\(540\) 0 0
\(541\) 347.149 0.641680 0.320840 0.947133i \(-0.396035\pi\)
0.320840 + 0.947133i \(0.396035\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 29.2455i 0.0536615i
\(546\) 0 0
\(547\) 720.833 1.31779 0.658896 0.752234i \(-0.271024\pi\)
0.658896 + 0.752234i \(0.271024\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 284.530i − 0.516388i
\(552\) 0 0
\(553\) −689.149 −1.24620
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 429.102i 0.770380i 0.922837 + 0.385190i \(0.125864\pi\)
−0.922837 + 0.385190i \(0.874136\pi\)
\(558\) 0 0
\(559\) 428.000 0.765653
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 670.820i − 1.19151i −0.803166 0.595755i \(-0.796853\pi\)
0.803166 0.595755i \(-0.203147\pi\)
\(564\) 0 0
\(565\) 46.3246 0.0819904
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 368.663i − 0.647914i −0.946072 0.323957i \(-0.894987\pi\)
0.946072 0.323957i \(-0.105013\pi\)
\(570\) 0 0
\(571\) −124.289 −0.217669 −0.108834 0.994060i \(-0.534712\pi\)
−0.108834 + 0.994060i \(0.534712\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 60.1972i 0.104691i
\(576\) 0 0
\(577\) 504.236 0.873893 0.436947 0.899487i \(-0.356060\pi\)
0.436947 + 0.899487i \(0.356060\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 566.690i 0.975370i
\(582\) 0 0
\(583\) 71.7722 0.123108
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.2256i 0.0668238i 0.999442 + 0.0334119i \(0.0106373\pi\)
−0.999442 + 0.0334119i \(0.989363\pi\)
\(588\) 0 0
\(589\) −368.544 −0.625711
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 621.670i 1.04835i 0.851611 + 0.524174i \(0.175626\pi\)
−0.851611 + 0.524174i \(0.824374\pi\)
\(594\) 0 0
\(595\) −195.895 −0.329235
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 1119.77i − 1.86940i −0.355436 0.934701i \(-0.615668\pi\)
0.355436 0.934701i \(-0.384332\pi\)
\(600\) 0 0
\(601\) −323.789 −0.538751 −0.269375 0.963035i \(-0.586817\pi\)
−0.269375 + 0.963035i \(0.586817\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 204.698i − 0.338344i
\(606\) 0 0
\(607\) −1025.63 −1.68966 −0.844832 0.535031i \(-0.820300\pi\)
−0.844832 + 0.535031i \(0.820300\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 393.014i 0.643232i
\(612\) 0 0
\(613\) 904.153 1.47496 0.737482 0.675367i \(-0.236015\pi\)
0.737482 + 0.675367i \(0.236015\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 710.716i − 1.15189i −0.817488 0.575945i \(-0.804634\pi\)
0.817488 0.575945i \(-0.195366\pi\)
\(618\) 0 0
\(619\) 583.737 0.943032 0.471516 0.881858i \(-0.343707\pi\)
0.471516 + 0.881858i \(0.343707\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 769.537i − 1.23521i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 812.924i 1.29241i
\(630\) 0 0
\(631\) 20.0968 0.0318491 0.0159246 0.999873i \(-0.494931\pi\)
0.0159246 + 0.999873i \(0.494931\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 85.0390i − 0.133920i
\(636\) 0 0
\(637\) 22.5487 0.0353983
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 341.607i 0.532928i 0.963845 + 0.266464i \(0.0858553\pi\)
−0.963845 + 0.266464i \(0.914145\pi\)
\(642\) 0 0
\(643\) 469.693 0.730471 0.365235 0.930915i \(-0.380989\pi\)
0.365235 + 0.930915i \(0.380989\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 572.099i 0.884234i 0.896957 + 0.442117i \(0.145772\pi\)
−0.896957 + 0.442117i \(0.854228\pi\)
\(648\) 0 0
\(649\) −136.508 −0.210336
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 213.540i 0.327014i 0.986542 + 0.163507i \(0.0522806\pi\)
−0.986542 + 0.163507i \(0.947719\pi\)
\(654\) 0 0
\(655\) −187.698 −0.286561
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 420.983i 0.638820i 0.947617 + 0.319410i \(0.103485\pi\)
−0.947617 + 0.319410i \(0.896515\pi\)
\(660\) 0 0
\(661\) 434.272 0.656992 0.328496 0.944505i \(-0.393458\pi\)
0.328496 + 0.944505i \(0.393458\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 101.290i − 0.152316i
\(666\) 0 0
\(667\) 541.631 0.812041
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 193.623i − 0.288560i
\(672\) 0 0
\(673\) 72.7801 0.108143 0.0540714 0.998537i \(-0.482780\pi\)
0.0540714 + 0.998537i \(0.482780\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 172.106i 0.254219i 0.991889 + 0.127109i \(0.0405700\pi\)
−0.991889 + 0.127109i \(0.959430\pi\)
\(678\) 0 0
\(679\) 7.72811 0.0113816
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 792.592i 1.16046i 0.814454 + 0.580228i \(0.197037\pi\)
−0.814454 + 0.580228i \(0.802963\pi\)
\(684\) 0 0
\(685\) −34.8683 −0.0509027
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 129.747i − 0.188313i
\(690\) 0 0
\(691\) −154.851 −0.224097 −0.112049 0.993703i \(-0.535741\pi\)
−0.112049 + 0.993703i \(0.535741\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 151.699i 0.218272i
\(696\) 0 0
\(697\) 201.509 0.289109
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 950.544i − 1.35598i −0.735070 0.677991i \(-0.762851\pi\)
0.735070 0.677991i \(-0.237149\pi\)
\(702\) 0 0
\(703\) −420.333 −0.597913
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1219.61i − 1.72505i
\(708\) 0 0
\(709\) 390.350 0.550564 0.275282 0.961363i \(-0.411229\pi\)
0.275282 + 0.961363i \(0.411229\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 701.561i − 0.983956i
\(714\) 0 0
\(715\) 119.070 0.166532
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 655.227i − 0.911303i −0.890158 0.455651i \(-0.849406\pi\)
0.890158 0.455651i \(-0.150594\pi\)
\(720\) 0 0
\(721\) −920.070 −1.27610
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 224.940i − 0.310263i
\(726\) 0 0
\(727\) −1424.25 −1.95908 −0.979539 0.201254i \(-0.935498\pi\)
−0.979539 + 0.201254i \(0.935498\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 533.580i 0.729932i
\(732\) 0 0
\(733\) −946.749 −1.29161 −0.645805 0.763503i \(-0.723478\pi\)
−0.645805 + 0.763503i \(0.723478\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 144.920i − 0.196635i
\(738\) 0 0
\(739\) −591.429 −0.800310 −0.400155 0.916447i \(-0.631044\pi\)
−0.400155 + 0.916447i \(0.631044\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 732.202i 0.985467i 0.870180 + 0.492734i \(0.164002\pi\)
−0.870180 + 0.492734i \(0.835998\pi\)
\(744\) 0 0
\(745\) −521.956 −0.700612
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 546.965i − 0.730261i
\(750\) 0 0
\(751\) 215.359 0.286764 0.143382 0.989667i \(-0.454202\pi\)
0.143382 + 0.989667i \(0.454202\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 414.457i 0.548950i
\(756\) 0 0
\(757\) 276.258 0.364938 0.182469 0.983212i \(-0.441591\pi\)
0.182469 + 0.983212i \(0.441591\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 893.373i − 1.17395i −0.809606 0.586973i \(-0.800319\pi\)
0.809606 0.586973i \(-0.199681\pi\)
\(762\) 0 0
\(763\) 93.6754 0.122773
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 246.775i 0.321740i
\(768\) 0 0
\(769\) 284.316 0.369722 0.184861 0.982765i \(-0.440817\pi\)
0.184861 + 0.982765i \(0.440817\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1059.64i 1.37081i 0.728162 + 0.685405i \(0.240375\pi\)
−0.728162 + 0.685405i \(0.759625\pi\)
\(774\) 0 0
\(775\) −291.359 −0.375948
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 104.193i 0.133752i
\(780\) 0 0
\(781\) −503.280 −0.644404
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 248.821i 0.316970i
\(786\) 0 0
\(787\) 875.517 1.11247 0.556237 0.831024i \(-0.312245\pi\)
0.556237 + 0.831024i \(0.312245\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 148.381i − 0.187586i
\(792\) 0 0
\(793\) −350.026 −0.441394
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 742.449i − 0.931555i −0.884902 0.465777i \(-0.845775\pi\)
0.884902 0.465777i \(-0.154225\pi\)
\(798\) 0 0
\(799\) −489.964 −0.613222
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 327.403i 0.407725i
\(804\) 0 0
\(805\) 192.816 0.239523
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 113.720i − 0.140568i −0.997527 0.0702842i \(-0.977609\pi\)
0.997527 0.0702842i \(-0.0223906\pi\)
\(810\) 0 0
\(811\) 1466.03 1.80769 0.903844 0.427863i \(-0.140733\pi\)
0.903844 + 0.427863i \(0.140733\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 265.562i 0.325843i
\(816\) 0 0
\(817\) −275.895 −0.337692
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 550.073i − 0.670003i −0.942218 0.335002i \(-0.891263\pi\)
0.942218 0.335002i \(-0.108737\pi\)
\(822\) 0 0
\(823\) −1392.51 −1.69199 −0.845997 0.533187i \(-0.820994\pi\)
−0.845997 + 0.533187i \(0.820994\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 955.922i − 1.15589i −0.816075 0.577945i \(-0.803855\pi\)
0.816075 0.577945i \(-0.196145\pi\)
\(828\) 0 0
\(829\) −1652.69 −1.99360 −0.996798 0.0799552i \(-0.974522\pi\)
−0.996798 + 0.0799552i \(0.974522\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 28.1111i 0.0337469i
\(834\) 0 0
\(835\) 494.605 0.592341
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1568.11i − 1.86903i −0.355927 0.934514i \(-0.615835\pi\)
0.355927 0.934514i \(-0.384165\pi\)
\(840\) 0 0
\(841\) −1182.93 −1.40657
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 162.644i 0.192478i
\(846\) 0 0
\(847\) −655.662 −0.774099
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 800.147i − 0.940243i
\(852\) 0 0
\(853\) −651.232 −0.763461 −0.381730 0.924274i \(-0.624672\pi\)
−0.381730 + 0.924274i \(0.624672\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 299.131i 0.349044i 0.984653 + 0.174522i \(0.0558380\pi\)
−0.984653 + 0.174522i \(0.944162\pi\)
\(858\) 0 0
\(859\) −1095.72 −1.27558 −0.637788 0.770212i \(-0.720150\pi\)
−0.637788 + 0.770212i \(0.720150\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1221.95i − 1.41593i −0.706247 0.707965i \(-0.749613\pi\)
0.706247 0.707965i \(-0.250387\pi\)
\(864\) 0 0
\(865\) −426.658 −0.493246
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 522.216i 0.600939i
\(870\) 0 0
\(871\) −261.982 −0.300782
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 80.0767i − 0.0915162i
\(876\) 0 0
\(877\) 766.399 0.873887 0.436944 0.899489i \(-0.356061\pi\)
0.436944 + 0.899489i \(0.356061\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 310.097i − 0.351983i −0.984392 0.175992i \(-0.943687\pi\)
0.984392 0.175992i \(-0.0563132\pi\)
\(882\) 0 0
\(883\) 122.236 0.138433 0.0692165 0.997602i \(-0.477950\pi\)
0.0692165 + 0.997602i \(0.477950\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 265.444i − 0.299261i −0.988742 0.149630i \(-0.952192\pi\)
0.988742 0.149630i \(-0.0478084\pi\)
\(888\) 0 0
\(889\) −272.386 −0.306396
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 253.343i − 0.283698i
\(894\) 0 0
\(895\) −129.917 −0.145158
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2621.54i 2.91606i
\(900\) 0 0
\(901\) 161.754 0.179527
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 364.302i 0.402544i
\(906\) 0 0
\(907\) −672.622 −0.741590 −0.370795 0.928715i \(-0.620915\pi\)
−0.370795 + 0.928715i \(0.620915\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1402.48i − 1.53949i −0.638350 0.769746i \(-0.720383\pi\)
0.638350 0.769746i \(-0.279617\pi\)
\(912\) 0 0
\(913\) 429.421 0.470340
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 601.208i 0.655625i
\(918\) 0 0
\(919\) 338.255 0.368068 0.184034 0.982920i \(-0.441084\pi\)
0.184034 + 0.982920i \(0.441084\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 909.811i 0.985711i
\(924\) 0 0
\(925\) −332.302 −0.359246
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 148.207i 0.159533i 0.996814 + 0.0797667i \(0.0254175\pi\)
−0.996814 + 0.0797667i \(0.974582\pi\)
\(930\) 0 0
\(931\) −14.5352 −0.0156125
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 148.443i 0.158763i
\(936\) 0 0
\(937\) −1416.72 −1.51197 −0.755987 0.654587i \(-0.772843\pi\)
−0.755987 + 0.654587i \(0.772843\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1398.92i − 1.48663i −0.668939 0.743317i \(-0.733251\pi\)
0.668939 0.743317i \(-0.266749\pi\)
\(942\) 0 0
\(943\) −198.342 −0.210330
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1050.57i − 1.10937i −0.832060 0.554686i \(-0.812839\pi\)
0.832060 0.554686i \(-0.187161\pi\)
\(948\) 0 0
\(949\) 591.868 0.623675
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 551.928i − 0.579148i −0.957156 0.289574i \(-0.906486\pi\)
0.957156 0.289574i \(-0.0935136\pi\)
\(954\) 0 0
\(955\) 223.745 0.234288
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 111.686i 0.116461i
\(960\) 0 0
\(961\) 2434.61 2.53342
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 138.401i 0.143420i
\(966\) 0 0
\(967\) 357.093 0.369279 0.184639 0.982806i \(-0.440888\pi\)
0.184639 + 0.982806i \(0.440888\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 308.206i − 0.317411i −0.987326 0.158705i \(-0.949268\pi\)
0.987326 0.158705i \(-0.0507320\pi\)
\(972\) 0 0
\(973\) 485.903 0.499387
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 253.280i 0.259243i 0.991564 + 0.129621i \(0.0413762\pi\)
−0.991564 + 0.129621i \(0.958624\pi\)
\(978\) 0 0
\(979\) −583.132 −0.595640
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1068.73i − 1.08722i −0.839339 0.543609i \(-0.817058\pi\)
0.839339 0.543609i \(-0.182942\pi\)
\(984\) 0 0
\(985\) 55.6313 0.0564785
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 525.194i − 0.531035i
\(990\) 0 0
\(991\) −280.631 −0.283179 −0.141590 0.989925i \(-0.545221\pi\)
−0.141590 + 0.989925i \(0.545221\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 349.925i − 0.351683i
\(996\) 0 0
\(997\) −356.574 −0.357647 −0.178824 0.983881i \(-0.557229\pi\)
−0.178824 + 0.983881i \(0.557229\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.l.a.161.1 4
3.2 odd 2 inner 720.3.l.a.161.3 4
4.3 odd 2 45.3.c.a.26.1 4
5.2 odd 4 3600.3.c.i.449.2 8
5.3 odd 4 3600.3.c.i.449.8 8
5.4 even 2 3600.3.l.v.1601.4 4
8.3 odd 2 2880.3.l.g.1601.4 4
8.5 even 2 2880.3.l.c.1601.3 4
12.11 even 2 45.3.c.a.26.4 yes 4
15.2 even 4 3600.3.c.i.449.1 8
15.8 even 4 3600.3.c.i.449.7 8
15.14 odd 2 3600.3.l.v.1601.3 4
20.3 even 4 225.3.d.b.224.1 8
20.7 even 4 225.3.d.b.224.8 8
20.19 odd 2 225.3.c.c.26.4 4
24.5 odd 2 2880.3.l.c.1601.1 4
24.11 even 2 2880.3.l.g.1601.2 4
36.7 odd 6 405.3.i.d.296.1 8
36.11 even 6 405.3.i.d.296.4 8
36.23 even 6 405.3.i.d.26.1 8
36.31 odd 6 405.3.i.d.26.4 8
60.23 odd 4 225.3.d.b.224.7 8
60.47 odd 4 225.3.d.b.224.2 8
60.59 even 2 225.3.c.c.26.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.c.a.26.1 4 4.3 odd 2
45.3.c.a.26.4 yes 4 12.11 even 2
225.3.c.c.26.1 4 60.59 even 2
225.3.c.c.26.4 4 20.19 odd 2
225.3.d.b.224.1 8 20.3 even 4
225.3.d.b.224.2 8 60.47 odd 4
225.3.d.b.224.7 8 60.23 odd 4
225.3.d.b.224.8 8 20.7 even 4
405.3.i.d.26.1 8 36.23 even 6
405.3.i.d.26.4 8 36.31 odd 6
405.3.i.d.296.1 8 36.7 odd 6
405.3.i.d.296.4 8 36.11 even 6
720.3.l.a.161.1 4 1.1 even 1 trivial
720.3.l.a.161.3 4 3.2 odd 2 inner
2880.3.l.c.1601.1 4 24.5 odd 2
2880.3.l.c.1601.3 4 8.5 even 2
2880.3.l.g.1601.2 4 24.11 even 2
2880.3.l.g.1601.4 4 8.3 odd 2
3600.3.c.i.449.1 8 15.2 even 4
3600.3.c.i.449.2 8 5.2 odd 4
3600.3.c.i.449.7 8 15.8 even 4
3600.3.c.i.449.8 8 5.3 odd 4
3600.3.l.v.1601.3 4 15.14 odd 2
3600.3.l.v.1601.4 4 5.4 even 2