Properties

Label 720.3.j.c
Level 720720
Weight 33
Character orbit 720.j
Analytic conductor 19.61919.619
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,3,Mod(559,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.559"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 720.j (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.618579033919.6185790339
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3i\beta = 3i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+4)q58βq1310βq17+(8β+7)q25+40q29+8βq37+80q4149q4930βq53+22q61+(32β+72)q65+32βq73+48βq97+O(q100) q + (\beta + 4) q^{5} - 8 \beta q^{13} - 10 \beta q^{17} + (8 \beta + 7) q^{25} + 40 q^{29} + 8 \beta q^{37} + 80 q^{41} - 49 q^{49} - 30 \beta q^{53} + 22 q^{61} + ( - 32 \beta + 72) q^{65} + 32 \beta q^{73} + \cdots - 48 \beta q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+8q5+14q25+80q29+160q4198q49+44q61+144q65+180q85+320q89+O(q100) 2 q + 8 q^{5} + 14 q^{25} + 80 q^{29} + 160 q^{41} - 98 q^{49} + 44 q^{61} + 144 q^{65} + 180 q^{85} + 320 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/720Z)×\left(\mathbb{Z}/720\mathbb{Z}\right)^\times.

nn 181181 271271 577577 641641
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
559.1
1.00000i
1.00000i
0 0 0 4.00000 3.00000i 0 0 0 0 0
559.2 0 0 0 4.00000 + 3.00000i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.3.j.c yes 2
3.b odd 2 1 720.3.j.b 2
4.b odd 2 1 CM 720.3.j.c yes 2
5.b even 2 1 inner 720.3.j.c yes 2
5.c odd 4 1 3600.3.e.b 1
5.c odd 4 1 3600.3.e.d 1
12.b even 2 1 720.3.j.b 2
15.d odd 2 1 720.3.j.b 2
15.e even 4 1 3600.3.e.a 1
15.e even 4 1 3600.3.e.e 1
20.d odd 2 1 inner 720.3.j.c yes 2
20.e even 4 1 3600.3.e.b 1
20.e even 4 1 3600.3.e.d 1
60.h even 2 1 720.3.j.b 2
60.l odd 4 1 3600.3.e.a 1
60.l odd 4 1 3600.3.e.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
720.3.j.b 2 3.b odd 2 1
720.3.j.b 2 12.b even 2 1
720.3.j.b 2 15.d odd 2 1
720.3.j.b 2 60.h even 2 1
720.3.j.c yes 2 1.a even 1 1 trivial
720.3.j.c yes 2 4.b odd 2 1 CM
720.3.j.c yes 2 5.b even 2 1 inner
720.3.j.c yes 2 20.d odd 2 1 inner
3600.3.e.a 1 15.e even 4 1
3600.3.e.a 1 60.l odd 4 1
3600.3.e.b 1 5.c odd 4 1
3600.3.e.b 1 20.e even 4 1
3600.3.e.d 1 5.c odd 4 1
3600.3.e.d 1 20.e even 4 1
3600.3.e.e 1 15.e even 4 1
3600.3.e.e 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(720,[χ])S_{3}^{\mathrm{new}}(720, [\chi]):

T7 T_{7} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T2940 T_{29} - 40 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T28T+25 T^{2} - 8T + 25 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+576 T^{2} + 576 Copy content Toggle raw display
1717 T2+900 T^{2} + 900 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T40)2 (T - 40)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+576 T^{2} + 576 Copy content Toggle raw display
4141 (T80)2 (T - 80)^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+8100 T^{2} + 8100 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T22)2 (T - 22)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+9216 T^{2} + 9216 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T160)2 (T - 160)^{2} Copy content Toggle raw display
9797 T2+20736 T^{2} + 20736 Copy content Toggle raw display
show more
show less