Properties

Label 720.3.bh.d.577.1
Level $720$
Weight $3$
Character 720.577
Analytic conductor $19.619$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,3,Mod(433,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.433"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.bh (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 720.577
Dual form 720.3.bh.d.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.00000 - 4.00000i) q^{5} +(-8.00000 - 8.00000i) q^{7} +4.00000 q^{11} +(-3.00000 + 3.00000i) q^{13} +(-19.0000 - 19.0000i) q^{17} +8.00000i q^{19} +(-20.0000 + 20.0000i) q^{23} +(-7.00000 - 24.0000i) q^{25} +38.0000i q^{29} +44.0000 q^{31} +(-56.0000 + 8.00000i) q^{35} +(-3.00000 - 3.00000i) q^{37} -70.0000 q^{41} +(-36.0000 + 36.0000i) q^{43} +79.0000i q^{49} +(-17.0000 + 17.0000i) q^{53} +(12.0000 - 16.0000i) q^{55} -92.0000i q^{59} +72.0000 q^{61} +(3.00000 + 21.0000i) q^{65} +(-44.0000 - 44.0000i) q^{67} -88.0000 q^{71} +(55.0000 - 55.0000i) q^{73} +(-32.0000 - 32.0000i) q^{77} -12.0000i q^{79} +(-24.0000 + 24.0000i) q^{83} +(-133.000 + 19.0000i) q^{85} -26.0000i q^{89} +48.0000 q^{91} +(32.0000 + 24.0000i) q^{95} +(-57.0000 - 57.0000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{5} - 16 q^{7} + 8 q^{11} - 6 q^{13} - 38 q^{17} - 40 q^{23} - 14 q^{25} + 88 q^{31} - 112 q^{35} - 6 q^{37} - 140 q^{41} - 72 q^{43} - 34 q^{53} + 24 q^{55} + 144 q^{61} + 6 q^{65} - 88 q^{67}+ \cdots - 114 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.00000 4.00000i 0.600000 0.800000i
\(6\) 0 0
\(7\) −8.00000 8.00000i −1.14286 1.14286i −0.987925 0.154932i \(-0.950484\pi\)
−0.154932 0.987925i \(-0.549516\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 0.363636 0.181818 0.983332i \(-0.441802\pi\)
0.181818 + 0.983332i \(0.441802\pi\)
\(12\) 0 0
\(13\) −3.00000 + 3.00000i −0.230769 + 0.230769i −0.813014 0.582245i \(-0.802175\pi\)
0.582245 + 0.813014i \(0.302175\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −19.0000 19.0000i −1.11765 1.11765i −0.992086 0.125561i \(-0.959927\pi\)
−0.125561 0.992086i \(-0.540073\pi\)
\(18\) 0 0
\(19\) 8.00000i 0.421053i 0.977588 + 0.210526i \(0.0675178\pi\)
−0.977588 + 0.210526i \(0.932482\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −20.0000 + 20.0000i −0.869565 + 0.869565i −0.992424 0.122859i \(-0.960794\pi\)
0.122859 + 0.992424i \(0.460794\pi\)
\(24\) 0 0
\(25\) −7.00000 24.0000i −0.280000 0.960000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 38.0000i 1.31034i 0.755479 + 0.655172i \(0.227404\pi\)
−0.755479 + 0.655172i \(0.772596\pi\)
\(30\) 0 0
\(31\) 44.0000 1.41935 0.709677 0.704527i \(-0.248841\pi\)
0.709677 + 0.704527i \(0.248841\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −56.0000 + 8.00000i −1.60000 + 0.228571i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.0810811 0.0810811i 0.665403 0.746484i \(-0.268260\pi\)
−0.746484 + 0.665403i \(0.768260\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −70.0000 −1.70732 −0.853659 0.520833i \(-0.825621\pi\)
−0.853659 + 0.520833i \(0.825621\pi\)
\(42\) 0 0
\(43\) −36.0000 + 36.0000i −0.837209 + 0.837209i −0.988491 0.151281i \(-0.951660\pi\)
0.151281 + 0.988491i \(0.451660\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 79.0000i 1.61224i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −17.0000 + 17.0000i −0.320755 + 0.320755i −0.849057 0.528302i \(-0.822829\pi\)
0.528302 + 0.849057i \(0.322829\pi\)
\(54\) 0 0
\(55\) 12.0000 16.0000i 0.218182 0.290909i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 92.0000i 1.55932i −0.626202 0.779661i \(-0.715391\pi\)
0.626202 0.779661i \(-0.284609\pi\)
\(60\) 0 0
\(61\) 72.0000 1.18033 0.590164 0.807283i \(-0.299063\pi\)
0.590164 + 0.807283i \(0.299063\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 + 21.0000i 0.0461538 + 0.323077i
\(66\) 0 0
\(67\) −44.0000 44.0000i −0.656716 0.656716i 0.297885 0.954602i \(-0.403719\pi\)
−0.954602 + 0.297885i \(0.903719\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −88.0000 −1.23944 −0.619718 0.784824i \(-0.712753\pi\)
−0.619718 + 0.784824i \(0.712753\pi\)
\(72\) 0 0
\(73\) 55.0000 55.0000i 0.753425 0.753425i −0.221692 0.975117i \(-0.571158\pi\)
0.975117 + 0.221692i \(0.0711580\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −32.0000 32.0000i −0.415584 0.415584i
\(78\) 0 0
\(79\) 12.0000i 0.151899i −0.997112 0.0759494i \(-0.975801\pi\)
0.997112 0.0759494i \(-0.0241987\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −24.0000 + 24.0000i −0.289157 + 0.289157i −0.836747 0.547590i \(-0.815545\pi\)
0.547590 + 0.836747i \(0.315545\pi\)
\(84\) 0 0
\(85\) −133.000 + 19.0000i −1.56471 + 0.223529i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 26.0000i 0.292135i −0.989275 0.146067i \(-0.953338\pi\)
0.989275 0.146067i \(-0.0466616\pi\)
\(90\) 0 0
\(91\) 48.0000 0.527473
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 32.0000 + 24.0000i 0.336842 + 0.252632i
\(96\) 0 0
\(97\) −57.0000 57.0000i −0.587629 0.587629i 0.349360 0.936989i \(-0.386399\pi\)
−0.936989 + 0.349360i \(0.886399\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −56.0000 −0.554455 −0.277228 0.960804i \(-0.589416\pi\)
−0.277228 + 0.960804i \(0.589416\pi\)
\(102\) 0 0
\(103\) −4.00000 + 4.00000i −0.0388350 + 0.0388350i −0.726258 0.687423i \(-0.758742\pi\)
0.687423 + 0.726258i \(0.258742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −68.0000 68.0000i −0.635514 0.635514i 0.313932 0.949446i \(-0.398354\pi\)
−0.949446 + 0.313932i \(0.898354\pi\)
\(108\) 0 0
\(109\) 46.0000i 0.422018i −0.977484 0.211009i \(-0.932325\pi\)
0.977484 0.211009i \(-0.0676750\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −53.0000 + 53.0000i −0.469027 + 0.469027i −0.901599 0.432573i \(-0.857606\pi\)
0.432573 + 0.901599i \(0.357606\pi\)
\(114\) 0 0
\(115\) 20.0000 + 140.000i 0.173913 + 1.21739i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 304.000i 2.55462i
\(120\) 0 0
\(121\) −105.000 −0.867769
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −117.000 44.0000i −0.936000 0.352000i
\(126\) 0 0
\(127\) −68.0000 68.0000i −0.535433 0.535433i 0.386751 0.922184i \(-0.373597\pi\)
−0.922184 + 0.386751i \(0.873597\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −44.0000 −0.335878 −0.167939 0.985797i \(-0.553711\pi\)
−0.167939 + 0.985797i \(0.553711\pi\)
\(132\) 0 0
\(133\) 64.0000 64.0000i 0.481203 0.481203i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 69.0000 + 69.0000i 0.503650 + 0.503650i 0.912570 0.408920i \(-0.134095\pi\)
−0.408920 + 0.912570i \(0.634095\pi\)
\(138\) 0 0
\(139\) 80.0000i 0.575540i −0.957700 0.287770i \(-0.907086\pi\)
0.957700 0.287770i \(-0.0929138\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.0000 + 12.0000i −0.0839161 + 0.0839161i
\(144\) 0 0
\(145\) 152.000 + 114.000i 1.04828 + 0.786207i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 168.000i 1.12752i −0.825940 0.563758i \(-0.809355\pi\)
0.825940 0.563758i \(-0.190645\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.0264901 −0.0132450 0.999912i \(-0.504216\pi\)
−0.0132450 + 0.999912i \(0.504216\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 132.000 176.000i 0.851613 1.13548i
\(156\) 0 0
\(157\) 99.0000 + 99.0000i 0.630573 + 0.630573i 0.948212 0.317639i \(-0.102890\pi\)
−0.317639 + 0.948212i \(0.602890\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 320.000 1.98758
\(162\) 0 0
\(163\) 160.000 160.000i 0.981595 0.981595i −0.0182386 0.999834i \(-0.505806\pi\)
0.999834 + 0.0182386i \(0.00580584\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 56.0000 + 56.0000i 0.335329 + 0.335329i 0.854606 0.519277i \(-0.173799\pi\)
−0.519277 + 0.854606i \(0.673799\pi\)
\(168\) 0 0
\(169\) 151.000i 0.893491i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 41.0000 41.0000i 0.236994 0.236994i −0.578610 0.815604i \(-0.696405\pi\)
0.815604 + 0.578610i \(0.196405\pi\)
\(174\) 0 0
\(175\) −136.000 + 248.000i −0.777143 + 1.41714i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 172.000i 0.960894i −0.877024 0.480447i \(-0.840474\pi\)
0.877024 0.480447i \(-0.159526\pi\)
\(180\) 0 0
\(181\) 62.0000 0.342541 0.171271 0.985224i \(-0.445213\pi\)
0.171271 + 0.985224i \(0.445213\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −21.0000 + 3.00000i −0.113514 + 0.0162162i
\(186\) 0 0
\(187\) −76.0000 76.0000i −0.406417 0.406417i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 248.000 1.29843 0.649215 0.760605i \(-0.275098\pi\)
0.649215 + 0.760605i \(0.275098\pi\)
\(192\) 0 0
\(193\) 135.000 135.000i 0.699482 0.699482i −0.264817 0.964299i \(-0.585312\pi\)
0.964299 + 0.264817i \(0.0853115\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 153.000 + 153.000i 0.776650 + 0.776650i 0.979260 0.202610i \(-0.0649423\pi\)
−0.202610 + 0.979260i \(0.564942\pi\)
\(198\) 0 0
\(199\) 252.000i 1.26633i 0.774016 + 0.633166i \(0.218245\pi\)
−0.774016 + 0.633166i \(0.781755\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 304.000 304.000i 1.49754 1.49754i
\(204\) 0 0
\(205\) −210.000 + 280.000i −1.02439 + 1.36585i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 32.0000i 0.153110i
\(210\) 0 0
\(211\) 64.0000 0.303318 0.151659 0.988433i \(-0.451539\pi\)
0.151659 + 0.988433i \(0.451539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 36.0000 + 252.000i 0.167442 + 1.17209i
\(216\) 0 0
\(217\) −352.000 352.000i −1.62212 1.62212i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 114.000 0.515837
\(222\) 0 0
\(223\) 228.000 228.000i 1.02242 1.02242i 0.0226787 0.999743i \(-0.492781\pi\)
0.999743 0.0226787i \(-0.00721948\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −100.000 100.000i −0.440529 0.440529i 0.451661 0.892190i \(-0.350832\pi\)
−0.892190 + 0.451661i \(0.850832\pi\)
\(228\) 0 0
\(229\) 312.000i 1.36245i −0.732076 0.681223i \(-0.761449\pi\)
0.732076 0.681223i \(-0.238551\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 93.0000 93.0000i 0.399142 0.399142i −0.478789 0.877930i \(-0.658924\pi\)
0.877930 + 0.478789i \(0.158924\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 96.0000i 0.401674i −0.979625 0.200837i \(-0.935634\pi\)
0.979625 0.200837i \(-0.0643661\pi\)
\(240\) 0 0
\(241\) 160.000 0.663900 0.331950 0.943297i \(-0.392293\pi\)
0.331950 + 0.943297i \(0.392293\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 316.000 + 237.000i 1.28980 + 0.967347i
\(246\) 0 0
\(247\) −24.0000 24.0000i −0.0971660 0.0971660i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.0478088 0.0239044 0.999714i \(-0.492390\pi\)
0.0239044 + 0.999714i \(0.492390\pi\)
\(252\) 0 0
\(253\) −80.0000 + 80.0000i −0.316206 + 0.316206i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −101.000 101.000i −0.392996 0.392996i 0.482758 0.875754i \(-0.339635\pi\)
−0.875754 + 0.482758i \(0.839635\pi\)
\(258\) 0 0
\(259\) 48.0000i 0.185328i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −208.000 + 208.000i −0.790875 + 0.790875i −0.981636 0.190762i \(-0.938904\pi\)
0.190762 + 0.981636i \(0.438904\pi\)
\(264\) 0 0
\(265\) 17.0000 + 119.000i 0.0641509 + 0.449057i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 296.000i 1.10037i 0.835042 + 0.550186i \(0.185443\pi\)
−0.835042 + 0.550186i \(0.814557\pi\)
\(270\) 0 0
\(271\) −108.000 −0.398524 −0.199262 0.979946i \(-0.563854\pi\)
−0.199262 + 0.979946i \(0.563854\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −28.0000 96.0000i −0.101818 0.349091i
\(276\) 0 0
\(277\) −243.000 243.000i −0.877256 0.877256i 0.115994 0.993250i \(-0.462995\pi\)
−0.993250 + 0.115994i \(0.962995\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −378.000 −1.34520 −0.672598 0.740008i \(-0.734822\pi\)
−0.672598 + 0.740008i \(0.734822\pi\)
\(282\) 0 0
\(283\) −92.0000 + 92.0000i −0.325088 + 0.325088i −0.850715 0.525627i \(-0.823831\pi\)
0.525627 + 0.850715i \(0.323831\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 560.000 + 560.000i 1.95122 + 1.95122i
\(288\) 0 0
\(289\) 433.000i 1.49827i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 279.000 279.000i 0.952218 0.952218i −0.0466910 0.998909i \(-0.514868\pi\)
0.998909 + 0.0466910i \(0.0148676\pi\)
\(294\) 0 0
\(295\) −368.000 276.000i −1.24746 0.935593i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 120.000i 0.401338i
\(300\) 0 0
\(301\) 576.000 1.91362
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 216.000 288.000i 0.708197 0.944262i
\(306\) 0 0
\(307\) −216.000 216.000i −0.703583 0.703583i 0.261595 0.965178i \(-0.415752\pi\)
−0.965178 + 0.261595i \(0.915752\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 272.000 0.874598 0.437299 0.899316i \(-0.355935\pi\)
0.437299 + 0.899316i \(0.355935\pi\)
\(312\) 0 0
\(313\) 15.0000 15.0000i 0.0479233 0.0479233i −0.682739 0.730662i \(-0.739211\pi\)
0.730662 + 0.682739i \(0.239211\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −87.0000 87.0000i −0.274448 0.274448i 0.556440 0.830888i \(-0.312167\pi\)
−0.830888 + 0.556440i \(0.812167\pi\)
\(318\) 0 0
\(319\) 152.000i 0.476489i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 152.000 152.000i 0.470588 0.470588i
\(324\) 0 0
\(325\) 93.0000 + 51.0000i 0.286154 + 0.156923i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 584.000 1.76435 0.882175 0.470921i \(-0.156078\pi\)
0.882175 + 0.470921i \(0.156078\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −308.000 + 44.0000i −0.919403 + 0.131343i
\(336\) 0 0
\(337\) −129.000 129.000i −0.382789 0.382789i 0.489317 0.872106i \(-0.337246\pi\)
−0.872106 + 0.489317i \(0.837246\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 176.000 0.516129
\(342\) 0 0
\(343\) 240.000 240.000i 0.699708 0.699708i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −260.000 260.000i −0.749280 0.749280i 0.225064 0.974344i \(-0.427741\pi\)
−0.974344 + 0.225064i \(0.927741\pi\)
\(348\) 0 0
\(349\) 136.000i 0.389685i 0.980835 + 0.194842i \(0.0624195\pi\)
−0.980835 + 0.194842i \(0.937580\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 75.0000 75.0000i 0.212465 0.212465i −0.592849 0.805314i \(-0.701997\pi\)
0.805314 + 0.592849i \(0.201997\pi\)
\(354\) 0 0
\(355\) −264.000 + 352.000i −0.743662 + 0.991549i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 32.0000i 0.0891365i 0.999006 + 0.0445682i \(0.0141912\pi\)
−0.999006 + 0.0445682i \(0.985809\pi\)
\(360\) 0 0
\(361\) 297.000 0.822715
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −55.0000 385.000i −0.150685 1.05479i
\(366\) 0 0
\(367\) 16.0000 + 16.0000i 0.0435967 + 0.0435967i 0.728569 0.684972i \(-0.240186\pi\)
−0.684972 + 0.728569i \(0.740186\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 272.000 0.733154
\(372\) 0 0
\(373\) −251.000 + 251.000i −0.672922 + 0.672922i −0.958389 0.285466i \(-0.907851\pi\)
0.285466 + 0.958389i \(0.407851\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −114.000 114.000i −0.302387 0.302387i
\(378\) 0 0
\(379\) 560.000i 1.47757i 0.673940 + 0.738786i \(0.264601\pi\)
−0.673940 + 0.738786i \(0.735399\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −300.000 + 300.000i −0.783290 + 0.783290i −0.980384 0.197095i \(-0.936849\pi\)
0.197095 + 0.980384i \(0.436849\pi\)
\(384\) 0 0
\(385\) −224.000 + 32.0000i −0.581818 + 0.0831169i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.0000i 0.0616967i 0.999524 + 0.0308483i \(0.00982089\pi\)
−0.999524 + 0.0308483i \(0.990179\pi\)
\(390\) 0 0
\(391\) 760.000 1.94373
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −48.0000 36.0000i −0.121519 0.0911392i
\(396\) 0 0
\(397\) −299.000 299.000i −0.753149 0.753149i 0.221917 0.975066i \(-0.428769\pi\)
−0.975066 + 0.221917i \(0.928769\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 144.000 0.359102 0.179551 0.983749i \(-0.442535\pi\)
0.179551 + 0.983749i \(0.442535\pi\)
\(402\) 0 0
\(403\) −132.000 + 132.000i −0.327543 + 0.327543i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.0000 12.0000i −0.0294840 0.0294840i
\(408\) 0 0
\(409\) 354.000i 0.865526i −0.901508 0.432763i \(-0.857539\pi\)
0.901508 0.432763i \(-0.142461\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −736.000 + 736.000i −1.78208 + 1.78208i
\(414\) 0 0
\(415\) 24.0000 + 168.000i 0.0578313 + 0.404819i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 468.000i 1.11695i −0.829523 0.558473i \(-0.811388\pi\)
0.829523 0.558473i \(-0.188612\pi\)
\(420\) 0 0
\(421\) 104.000 0.247031 0.123515 0.992343i \(-0.460583\pi\)
0.123515 + 0.992343i \(0.460583\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −323.000 + 589.000i −0.760000 + 1.38588i
\(426\) 0 0
\(427\) −576.000 576.000i −1.34895 1.34895i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −680.000 −1.57773 −0.788863 0.614569i \(-0.789330\pi\)
−0.788863 + 0.614569i \(0.789330\pi\)
\(432\) 0 0
\(433\) 41.0000 41.0000i 0.0946882 0.0946882i −0.658176 0.752864i \(-0.728672\pi\)
0.752864 + 0.658176i \(0.228672\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −160.000 160.000i −0.366133 0.366133i
\(438\) 0 0
\(439\) 364.000i 0.829157i 0.910014 + 0.414579i \(0.136071\pi\)
−0.910014 + 0.414579i \(0.863929\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −372.000 + 372.000i −0.839729 + 0.839729i −0.988823 0.149094i \(-0.952364\pi\)
0.149094 + 0.988823i \(0.452364\pi\)
\(444\) 0 0
\(445\) −104.000 78.0000i −0.233708 0.175281i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 176.000i 0.391982i 0.980606 + 0.195991i \(0.0627924\pi\)
−0.980606 + 0.195991i \(0.937208\pi\)
\(450\) 0 0
\(451\) −280.000 −0.620843
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 144.000 192.000i 0.316484 0.421978i
\(456\) 0 0
\(457\) 129.000 + 129.000i 0.282276 + 0.282276i 0.834016 0.551740i \(-0.186036\pi\)
−0.551740 + 0.834016i \(0.686036\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −568.000 −1.23210 −0.616052 0.787705i \(-0.711269\pi\)
−0.616052 + 0.787705i \(0.711269\pi\)
\(462\) 0 0
\(463\) 568.000 568.000i 1.22678 1.22678i 0.261608 0.965174i \(-0.415747\pi\)
0.965174 0.261608i \(-0.0842526\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −272.000 272.000i −0.582441 0.582441i 0.353132 0.935573i \(-0.385117\pi\)
−0.935573 + 0.353132i \(0.885117\pi\)
\(468\) 0 0
\(469\) 704.000i 1.50107i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −144.000 + 144.000i −0.304440 + 0.304440i
\(474\) 0 0
\(475\) 192.000 56.0000i 0.404211 0.117895i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 928.000i 1.93737i 0.248294 + 0.968685i \(0.420130\pi\)
−0.248294 + 0.968685i \(0.579870\pi\)
\(480\) 0 0
\(481\) 18.0000 0.0374220
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −399.000 + 57.0000i −0.822680 + 0.117526i
\(486\) 0 0
\(487\) −252.000 252.000i −0.517454 0.517454i 0.399346 0.916800i \(-0.369237\pi\)
−0.916800 + 0.399346i \(0.869237\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −844.000 −1.71894 −0.859470 0.511185i \(-0.829207\pi\)
−0.859470 + 0.511185i \(0.829207\pi\)
\(492\) 0 0
\(493\) 722.000 722.000i 1.46450 1.46450i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 704.000 + 704.000i 1.41650 + 1.41650i
\(498\) 0 0
\(499\) 872.000i 1.74749i −0.486380 0.873747i \(-0.661683\pi\)
0.486380 0.873747i \(-0.338317\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 480.000 480.000i 0.954274 0.954274i −0.0447250 0.998999i \(-0.514241\pi\)
0.998999 + 0.0447250i \(0.0142412\pi\)
\(504\) 0 0
\(505\) −168.000 + 224.000i −0.332673 + 0.443564i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 694.000i 1.36346i −0.731605 0.681729i \(-0.761228\pi\)
0.731605 0.681729i \(-0.238772\pi\)
\(510\) 0 0
\(511\) −880.000 −1.72211
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.00000 + 28.0000i 0.00776699 + 0.0543689i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −528.000 −1.01344 −0.506718 0.862112i \(-0.669141\pi\)
−0.506718 + 0.862112i \(0.669141\pi\)
\(522\) 0 0
\(523\) −552.000 + 552.000i −1.05545 + 1.05545i −0.0570797 + 0.998370i \(0.518179\pi\)
−0.998370 + 0.0570797i \(0.981821\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −836.000 836.000i −1.58634 1.58634i
\(528\) 0 0
\(529\) 271.000i 0.512287i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 210.000 210.000i 0.393996 0.393996i
\(534\) 0 0
\(535\) −476.000 + 68.0000i −0.889720 + 0.127103i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 316.000i 0.586271i
\(540\) 0 0
\(541\) −782.000 −1.44547 −0.722736 0.691125i \(-0.757116\pi\)
−0.722736 + 0.691125i \(0.757116\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −184.000 138.000i −0.337615 0.253211i
\(546\) 0 0
\(547\) 420.000 + 420.000i 0.767824 + 0.767824i 0.977723 0.209899i \(-0.0673134\pi\)
−0.209899 + 0.977723i \(0.567313\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −304.000 −0.551724
\(552\) 0 0
\(553\) −96.0000 + 96.0000i −0.173599 + 0.173599i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −417.000 417.000i −0.748654 0.748654i 0.225573 0.974226i \(-0.427575\pi\)
−0.974226 + 0.225573i \(0.927575\pi\)
\(558\) 0 0
\(559\) 216.000i 0.386404i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 228.000 228.000i 0.404973 0.404973i −0.475008 0.879981i \(-0.657555\pi\)
0.879981 + 0.475008i \(0.157555\pi\)
\(564\) 0 0
\(565\) 53.0000 + 371.000i 0.0938053 + 0.656637i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 368.000i 0.646749i −0.946271 0.323374i \(-0.895183\pi\)
0.946271 0.323374i \(-0.104817\pi\)
\(570\) 0 0
\(571\) 736.000 1.28897 0.644483 0.764618i \(-0.277072\pi\)
0.644483 + 0.764618i \(0.277072\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 620.000 + 340.000i 1.07826 + 0.591304i
\(576\) 0 0
\(577\) −113.000 113.000i −0.195841 0.195841i 0.602374 0.798214i \(-0.294222\pi\)
−0.798214 + 0.602374i \(0.794222\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 384.000 0.660929
\(582\) 0 0
\(583\) −68.0000 + 68.0000i −0.116638 + 0.116638i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 684.000 + 684.000i 1.16525 + 1.16525i 0.983310 + 0.181937i \(0.0582366\pi\)
0.181937 + 0.983310i \(0.441763\pi\)
\(588\) 0 0
\(589\) 352.000i 0.597623i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 149.000 149.000i 0.251265 0.251265i −0.570224 0.821489i \(-0.693144\pi\)
0.821489 + 0.570224i \(0.193144\pi\)
\(594\) 0 0
\(595\) 1216.00 + 912.000i 2.04370 + 1.53277i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 152.000i 0.253756i −0.991918 0.126878i \(-0.959504\pi\)
0.991918 0.126878i \(-0.0404957\pi\)
\(600\) 0 0
\(601\) 320.000 0.532446 0.266223 0.963911i \(-0.414224\pi\)
0.266223 + 0.963911i \(0.414224\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −315.000 + 420.000i −0.520661 + 0.694215i
\(606\) 0 0
\(607\) 528.000 + 528.000i 0.869852 + 0.869852i 0.992456 0.122604i \(-0.0391245\pi\)
−0.122604 + 0.992456i \(0.539124\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 771.000 771.000i 1.25775 1.25775i 0.305583 0.952165i \(-0.401148\pi\)
0.952165 0.305583i \(-0.0988515\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −675.000 675.000i −1.09400 1.09400i −0.995097 0.0989065i \(-0.968466\pi\)
−0.0989065 0.995097i \(-0.531534\pi\)
\(618\) 0 0
\(619\) 600.000i 0.969305i −0.874707 0.484653i \(-0.838946\pi\)
0.874707 0.484653i \(-0.161054\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −208.000 + 208.000i −0.333868 + 0.333868i
\(624\) 0 0
\(625\) −527.000 + 336.000i −0.843200 + 0.537600i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 114.000i 0.181240i
\(630\) 0 0
\(631\) 20.0000 0.0316957 0.0158479 0.999874i \(-0.494955\pi\)
0.0158479 + 0.999874i \(0.494955\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −476.000 + 68.0000i −0.749606 + 0.107087i
\(636\) 0 0
\(637\) −237.000 237.000i −0.372057 0.372057i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 694.000 1.08268 0.541342 0.840803i \(-0.317917\pi\)
0.541342 + 0.840803i \(0.317917\pi\)
\(642\) 0 0
\(643\) 168.000 168.000i 0.261275 0.261275i −0.564297 0.825572i \(-0.690853\pi\)
0.825572 + 0.564297i \(0.190853\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −328.000 328.000i −0.506955 0.506955i 0.406635 0.913591i \(-0.366702\pi\)
−0.913591 + 0.406635i \(0.866702\pi\)
\(648\) 0 0
\(649\) 368.000i 0.567026i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −81.0000 + 81.0000i −0.124043 + 0.124043i −0.766403 0.642360i \(-0.777955\pi\)
0.642360 + 0.766403i \(0.277955\pi\)
\(654\) 0 0
\(655\) −132.000 + 176.000i −0.201527 + 0.268702i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 500.000i 0.758725i 0.925248 + 0.379363i \(0.123857\pi\)
−0.925248 + 0.379363i \(0.876143\pi\)
\(660\) 0 0
\(661\) −568.000 −0.859304 −0.429652 0.902995i \(-0.641364\pi\)
−0.429652 + 0.902995i \(0.641364\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −64.0000 448.000i −0.0962406 0.673684i
\(666\) 0 0
\(667\) −760.000 760.000i −1.13943 1.13943i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 288.000 0.429210
\(672\) 0 0
\(673\) 73.0000 73.0000i 0.108470 0.108470i −0.650789 0.759259i \(-0.725562\pi\)
0.759259 + 0.650789i \(0.225562\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 839.000 + 839.000i 1.23929 + 1.23929i 0.960291 + 0.279000i \(0.0900029\pi\)
0.279000 + 0.960291i \(0.409997\pi\)
\(678\) 0 0
\(679\) 912.000i 1.34315i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −744.000 + 744.000i −1.08931 + 1.08931i −0.0937126 + 0.995599i \(0.529873\pi\)
−0.995599 + 0.0937126i \(0.970127\pi\)
\(684\) 0 0
\(685\) 483.000 69.0000i 0.705109 0.100730i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 102.000i 0.148041i
\(690\) 0 0
\(691\) −504.000 −0.729378 −0.364689 0.931129i \(-0.618825\pi\)
−0.364689 + 0.931129i \(0.618825\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −320.000 240.000i −0.460432 0.345324i
\(696\) 0 0
\(697\) 1330.00 + 1330.00i 1.90818 + 1.90818i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −298.000 −0.425107 −0.212553 0.977149i \(-0.568178\pi\)
−0.212553 + 0.977149i \(0.568178\pi\)
\(702\) 0 0
\(703\) 24.0000 24.0000i 0.0341394 0.0341394i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 448.000 + 448.000i 0.633663 + 0.633663i
\(708\) 0 0
\(709\) 472.000i 0.665726i 0.942975 + 0.332863i \(0.108015\pi\)
−0.942975 + 0.332863i \(0.891985\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −880.000 + 880.000i −1.23422 + 1.23422i
\(714\) 0 0
\(715\) 12.0000 + 84.0000i 0.0167832 + 0.117483i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 872.000i 1.21280i −0.795161 0.606398i \(-0.792614\pi\)
0.795161 0.606398i \(-0.207386\pi\)
\(720\) 0 0
\(721\) 64.0000 0.0887656
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 912.000 266.000i 1.25793 0.366897i
\(726\) 0 0
\(727\) 60.0000 + 60.0000i 0.0825309 + 0.0825309i 0.747167 0.664636i \(-0.231413\pi\)
−0.664636 + 0.747167i \(0.731413\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1368.00 1.87141
\(732\) 0 0
\(733\) −581.000 + 581.000i −0.792633 + 0.792633i −0.981922 0.189289i \(-0.939382\pi\)
0.189289 + 0.981922i \(0.439382\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −176.000 176.000i −0.238806 0.238806i
\(738\) 0 0
\(739\) 1160.00i 1.56969i −0.619693 0.784844i \(-0.712743\pi\)
0.619693 0.784844i \(-0.287257\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 380.000 380.000i 0.511440 0.511440i −0.403527 0.914968i \(-0.632216\pi\)
0.914968 + 0.403527i \(0.132216\pi\)
\(744\) 0 0
\(745\) −672.000 504.000i −0.902013 0.676510i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1088.00i 1.45260i
\(750\) 0 0
\(751\) −780.000 −1.03862 −0.519308 0.854587i \(-0.673810\pi\)
−0.519308 + 0.854587i \(0.673810\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12.0000 + 16.0000i −0.0158940 + 0.0211921i
\(756\) 0 0
\(757\) 285.000 + 285.000i 0.376486 + 0.376486i 0.869833 0.493347i \(-0.164227\pi\)
−0.493347 + 0.869833i \(0.664227\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −304.000 −0.399474 −0.199737 0.979850i \(-0.564009\pi\)
−0.199737 + 0.979850i \(0.564009\pi\)
\(762\) 0 0
\(763\) −368.000 + 368.000i −0.482307 + 0.482307i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 276.000 + 276.000i 0.359844 + 0.359844i
\(768\) 0 0
\(769\) 1072.00i 1.39402i −0.717062 0.697009i \(-0.754514\pi\)
0.717062 0.697009i \(-0.245486\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 897.000 897.000i 1.16041 1.16041i 0.176029 0.984385i \(-0.443675\pi\)
0.984385 0.176029i \(-0.0563252\pi\)
\(774\) 0 0
\(775\) −308.000 1056.00i −0.397419 1.36258i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 560.000i 0.718870i
\(780\) 0 0
\(781\) −352.000 −0.450704
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 693.000 99.0000i 0.882803 0.126115i
\(786\) 0 0
\(787\) −328.000 328.000i −0.416773 0.416773i 0.467317 0.884090i \(-0.345221\pi\)
−0.884090 + 0.467317i \(0.845221\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 848.000 1.07206
\(792\) 0 0
\(793\) −216.000 + 216.000i −0.272383 + 0.272383i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 87.0000 + 87.0000i 0.109159 + 0.109159i 0.759577 0.650418i \(-0.225406\pi\)
−0.650418 + 0.759577i \(0.725406\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 220.000 220.000i 0.273973 0.273973i
\(804\) 0 0
\(805\) 960.000 1280.00i 1.19255 1.59006i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 922.000i 1.13968i 0.821756 + 0.569839i \(0.192995\pi\)
−0.821756 + 0.569839i \(0.807005\pi\)
\(810\) 0 0
\(811\) 1312.00 1.61776 0.808878 0.587977i \(-0.200075\pi\)
0.808878 + 0.587977i \(0.200075\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −160.000 1120.00i −0.196319 1.37423i
\(816\) 0 0
\(817\) −288.000 288.000i −0.352509 0.352509i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 950.000 1.15713 0.578563 0.815638i \(-0.303614\pi\)
0.578563 + 0.815638i \(0.303614\pi\)
\(822\) 0 0
\(823\) −68.0000 + 68.0000i −0.0826245 + 0.0826245i −0.747211 0.664587i \(-0.768608\pi\)
0.664587 + 0.747211i \(0.268608\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 264.000 + 264.000i 0.319226 + 0.319226i 0.848470 0.529244i \(-0.177524\pi\)
−0.529244 + 0.848470i \(0.677524\pi\)
\(828\) 0 0
\(829\) 178.000i 0.214717i −0.994220 0.107358i \(-0.965761\pi\)
0.994220 0.107358i \(-0.0342392\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1501.00 1501.00i 1.80192 1.80192i
\(834\) 0 0
\(835\) 392.000 56.0000i 0.469461 0.0670659i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1576.00i 1.87843i −0.343334 0.939213i \(-0.611556\pi\)
0.343334 0.939213i \(-0.388444\pi\)
\(840\) 0 0
\(841\) −603.000 −0.717004
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 604.000 + 453.000i 0.714793 + 0.536095i
\(846\) 0 0
\(847\) 840.000 + 840.000i 0.991736 + 0.991736i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 120.000 0.141011
\(852\) 0 0
\(853\) −509.000 + 509.000i −0.596717 + 0.596717i −0.939438 0.342720i \(-0.888652\pi\)
0.342720 + 0.939438i \(0.388652\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −357.000 357.000i −0.416569 0.416569i 0.467450 0.884019i \(-0.345173\pi\)
−0.884019 + 0.467450i \(0.845173\pi\)
\(858\) 0 0
\(859\) 520.000i 0.605355i 0.953093 + 0.302678i \(0.0978805\pi\)
−0.953093 + 0.302678i \(0.902119\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 952.000 952.000i 1.10313 1.10313i 0.109098 0.994031i \(-0.465204\pi\)
0.994031 0.109098i \(-0.0347961\pi\)
\(864\) 0 0
\(865\) −41.0000 287.000i −0.0473988 0.331792i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.0000i 0.0552359i
\(870\) 0 0
\(871\) 264.000 0.303100
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 584.000 + 1288.00i 0.667429 + 1.47200i
\(876\) 0 0
\(877\) −717.000 717.000i −0.817560 0.817560i 0.168194 0.985754i \(-0.446206\pi\)
−0.985754 + 0.168194i \(0.946206\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 554.000 0.628831 0.314415 0.949285i \(-0.398192\pi\)
0.314415 + 0.949285i \(0.398192\pi\)
\(882\) 0 0
\(883\) −952.000 + 952.000i −1.07814 + 1.07814i −0.0814666 + 0.996676i \(0.525960\pi\)
−0.996676 + 0.0814666i \(0.974040\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 648.000 + 648.000i 0.730552 + 0.730552i 0.970729 0.240177i \(-0.0772054\pi\)
−0.240177 + 0.970729i \(0.577205\pi\)
\(888\) 0 0
\(889\) 1088.00i 1.22385i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −688.000 516.000i −0.768715 0.576536i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1672.00i 1.85984i
\(900\) 0 0
\(901\) 646.000 0.716981
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 186.000 248.000i 0.205525 0.274033i
\(906\) 0 0
\(907\) 740.000 + 740.000i 0.815877 + 0.815877i 0.985508 0.169631i \(-0.0542576\pi\)
−0.169631 + 0.985508i \(0.554258\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −520.000 −0.570801 −0.285401 0.958408i \(-0.592127\pi\)
−0.285401 + 0.958408i \(0.592127\pi\)
\(912\) 0 0
\(913\) −96.0000 + 96.0000i −0.105148 + 0.105148i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 352.000 + 352.000i 0.383860 + 0.383860i
\(918\) 0 0
\(919\) 844.000i 0.918390i 0.888336 + 0.459195i \(0.151862\pi\)
−0.888336 + 0.459195i \(0.848138\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 264.000 264.000i 0.286024 0.286024i
\(924\) 0 0
\(925\) −51.0000 + 93.0000i −0.0551351 + 0.100541i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 208.000i 0.223897i −0.993714 0.111948i \(-0.964291\pi\)
0.993714 0.111948i \(-0.0357091\pi\)
\(930\) 0 0
\(931\) −632.000 −0.678840
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −532.000 + 76.0000i −0.568984 + 0.0812834i
\(936\) 0 0
\(937\) 7.00000 + 7.00000i 0.00747065 + 0.00747065i 0.710832 0.703362i \(-0.248319\pi\)
−0.703362 + 0.710832i \(0.748319\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1752.00 −1.86185 −0.930925 0.365212i \(-0.880997\pi\)
−0.930925 + 0.365212i \(0.880997\pi\)
\(942\) 0 0
\(943\) 1400.00 1400.00i 1.48462 1.48462i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 224.000 + 224.000i 0.236536 + 0.236536i 0.815414 0.578878i \(-0.196509\pi\)
−0.578878 + 0.815414i \(0.696509\pi\)
\(948\) 0 0
\(949\) 330.000i 0.347734i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −645.000 + 645.000i −0.676810 + 0.676810i −0.959277 0.282467i \(-0.908847\pi\)
0.282467 + 0.959277i \(0.408847\pi\)
\(954\) 0 0
\(955\) 744.000 992.000i 0.779058 1.03874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1104.00i 1.15120i
\(960\) 0 0
\(961\) 975.000 1.01457
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −135.000 945.000i −0.139896 0.979275i
\(966\) 0 0
\(967\) 92.0000 + 92.0000i 0.0951396 + 0.0951396i 0.753075 0.657935i \(-0.228570\pi\)
−0.657935 + 0.753075i \(0.728570\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.00000 −0.00411946 −0.00205973 0.999998i \(-0.500656\pi\)
−0.00205973 + 0.999998i \(0.500656\pi\)
\(972\) 0 0
\(973\) −640.000 + 640.000i −0.657760 + 0.657760i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1011.00 + 1011.00i 1.03480 + 1.03480i 0.999372 + 0.0354282i \(0.0112795\pi\)
0.0354282 + 0.999372i \(0.488720\pi\)
\(978\) 0 0
\(979\) 104.000i 0.106231i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −604.000 + 604.000i −0.614446 + 0.614446i −0.944101 0.329656i \(-0.893067\pi\)
0.329656 + 0.944101i \(0.393067\pi\)
\(984\) 0 0
\(985\) 1071.00 153.000i 1.08731 0.155330i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1440.00i 1.45602i
\(990\) 0 0
\(991\) −652.000 −0.657921 −0.328961 0.944344i \(-0.606698\pi\)
−0.328961 + 0.944344i \(0.606698\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1008.00 + 756.000i 1.01307 + 0.759799i
\(996\) 0 0
\(997\) 1051.00 + 1051.00i 1.05416 + 1.05416i 0.998447 + 0.0557158i \(0.0177441\pi\)
0.0557158 + 0.998447i \(0.482256\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.bh.d.577.1 2
3.2 odd 2 720.3.bh.b.577.1 2
4.3 odd 2 90.3.g.c.37.1 yes 2
5.3 odd 4 inner 720.3.bh.d.433.1 2
12.11 even 2 90.3.g.a.37.1 2
15.8 even 4 720.3.bh.b.433.1 2
20.3 even 4 90.3.g.c.73.1 yes 2
20.7 even 4 450.3.g.a.343.1 2
20.19 odd 2 450.3.g.a.307.1 2
60.23 odd 4 90.3.g.a.73.1 yes 2
60.47 odd 4 450.3.g.d.343.1 2
60.59 even 2 450.3.g.d.307.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.g.a.37.1 2 12.11 even 2
90.3.g.a.73.1 yes 2 60.23 odd 4
90.3.g.c.37.1 yes 2 4.3 odd 2
90.3.g.c.73.1 yes 2 20.3 even 4
450.3.g.a.307.1 2 20.19 odd 2
450.3.g.a.343.1 2 20.7 even 4
450.3.g.d.307.1 2 60.59 even 2
450.3.g.d.343.1 2 60.47 odd 4
720.3.bh.b.433.1 2 15.8 even 4
720.3.bh.b.577.1 2 3.2 odd 2
720.3.bh.d.433.1 2 5.3 odd 4 inner
720.3.bh.d.577.1 2 1.1 even 1 trivial