Properties

Label 720.2.x.d.703.1
Level $720$
Weight $2$
Character 720.703
Analytic conductor $5.749$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(127,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.x (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 703.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 720.703
Dual form 720.2.x.d.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 2.00000i) q^{5} +(-1.73205 - 1.73205i) q^{7} +O(q^{10})\) \(q+(1.00000 - 2.00000i) q^{5} +(-1.73205 - 1.73205i) q^{7} -3.46410i q^{11} +(1.00000 + 1.00000i) q^{13} +(-1.00000 + 1.00000i) q^{17} -6.92820 q^{19} +(-1.73205 + 1.73205i) q^{23} +(-3.00000 - 4.00000i) q^{25} -4.00000i q^{29} -3.46410i q^{31} +(-5.19615 + 1.73205i) q^{35} +(5.00000 - 5.00000i) q^{37} -2.00000 q^{41} +(1.73205 - 1.73205i) q^{43} +(1.73205 + 1.73205i) q^{47} -1.00000i q^{49} +(7.00000 + 7.00000i) q^{53} +(-6.92820 - 3.46410i) q^{55} -6.92820 q^{59} +6.00000 q^{61} +(3.00000 - 1.00000i) q^{65} +(5.19615 + 5.19615i) q^{67} -10.3923i q^{71} +(-7.00000 - 7.00000i) q^{73} +(-6.00000 + 6.00000i) q^{77} +(12.1244 - 12.1244i) q^{83} +(1.00000 + 3.00000i) q^{85} -8.00000i q^{89} -3.46410i q^{91} +(-6.92820 + 13.8564i) q^{95} +(-7.00000 + 7.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{5} + 4 q^{13} - 4 q^{17} - 12 q^{25} + 20 q^{37} - 8 q^{41} + 28 q^{53} + 24 q^{61} + 12 q^{65} - 28 q^{73} - 24 q^{77} + 4 q^{85} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) −1.73205 1.73205i −0.654654 0.654654i 0.299456 0.954110i \(-0.403195\pi\)
−0.954110 + 0.299456i \(0.903195\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.46410i 1.04447i −0.852803 0.522233i \(-0.825099\pi\)
0.852803 0.522233i \(-0.174901\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.00000i 0.277350 + 0.277350i 0.832050 0.554700i \(-0.187167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 0 0
\(19\) −6.92820 −1.58944 −0.794719 0.606977i \(-0.792382\pi\)
−0.794719 + 0.606977i \(0.792382\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.73205 + 1.73205i −0.361158 + 0.361158i −0.864239 0.503081i \(-0.832200\pi\)
0.503081 + 0.864239i \(0.332200\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000i 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.19615 + 1.73205i −0.878310 + 0.292770i
\(36\) 0 0
\(37\) 5.00000 5.00000i 0.821995 0.821995i −0.164399 0.986394i \(-0.552568\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 1.73205 1.73205i 0.264135 0.264135i −0.562596 0.826732i \(-0.690197\pi\)
0.826732 + 0.562596i \(0.190197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.73205 + 1.73205i 0.252646 + 0.252646i 0.822054 0.569409i \(-0.192828\pi\)
−0.569409 + 0.822054i \(0.692828\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.00000 + 7.00000i 0.961524 + 0.961524i 0.999287 0.0377628i \(-0.0120231\pi\)
−0.0377628 + 0.999287i \(0.512023\pi\)
\(54\) 0 0
\(55\) −6.92820 3.46410i −0.934199 0.467099i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.92820 −0.901975 −0.450988 0.892530i \(-0.648928\pi\)
−0.450988 + 0.892530i \(0.648928\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 1.00000i 0.372104 0.124035i
\(66\) 0 0
\(67\) 5.19615 + 5.19615i 0.634811 + 0.634811i 0.949271 0.314460i \(-0.101823\pi\)
−0.314460 + 0.949271i \(0.601823\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923i 1.23334i −0.787222 0.616670i \(-0.788481\pi\)
0.787222 0.616670i \(-0.211519\pi\)
\(72\) 0 0
\(73\) −7.00000 7.00000i −0.819288 0.819288i 0.166717 0.986005i \(-0.446683\pi\)
−0.986005 + 0.166717i \(0.946683\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.00000 + 6.00000i −0.683763 + 0.683763i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.1244 12.1244i 1.33082 1.33082i 0.426185 0.904636i \(-0.359857\pi\)
0.904636 0.426185i \(-0.140143\pi\)
\(84\) 0 0
\(85\) 1.00000 + 3.00000i 0.108465 + 0.325396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.00000i 0.847998i −0.905663 0.423999i \(-0.860626\pi\)
0.905663 0.423999i \(-0.139374\pi\)
\(90\) 0 0
\(91\) 3.46410i 0.363137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.92820 + 13.8564i −0.710819 + 1.42164i
\(96\) 0 0
\(97\) −7.00000 + 7.00000i −0.710742 + 0.710742i −0.966691 0.255948i \(-0.917612\pi\)
0.255948 + 0.966691i \(0.417612\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 1.73205 1.73205i 0.170664 0.170664i −0.616607 0.787271i \(-0.711493\pi\)
0.787271 + 0.616607i \(0.211493\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.66025 + 8.66025i 0.837218 + 0.837218i 0.988492 0.151274i \(-0.0483374\pi\)
−0.151274 + 0.988492i \(0.548337\pi\)
\(108\) 0 0
\(109\) 12.0000i 1.14939i 0.818367 + 0.574696i \(0.194880\pi\)
−0.818367 + 0.574696i \(0.805120\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.00000 9.00000i −0.846649 0.846649i 0.143065 0.989713i \(-0.454304\pi\)
−0.989713 + 0.143065i \(0.954304\pi\)
\(114\) 0 0
\(115\) 1.73205 + 5.19615i 0.161515 + 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.46410 0.317554
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 12.1244 + 12.1244i 1.07586 + 1.07586i 0.996876 + 0.0789869i \(0.0251685\pi\)
0.0789869 + 0.996876i \(0.474831\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.3923i 0.907980i 0.891007 + 0.453990i \(0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(132\) 0 0
\(133\) 12.0000 + 12.0000i 1.04053 + 1.04053i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 + 9.00000i −0.768922 + 0.768922i −0.977917 0.208995i \(-0.932981\pi\)
0.208995 + 0.977917i \(0.432981\pi\)
\(138\) 0 0
\(139\) 6.92820 0.587643 0.293821 0.955860i \(-0.405073\pi\)
0.293821 + 0.955860i \(0.405073\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.46410 3.46410i 0.289683 0.289683i
\(144\) 0 0
\(145\) −8.00000 4.00000i −0.664364 0.332182i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.00000i 0.327693i −0.986486 0.163846i \(-0.947610\pi\)
0.986486 0.163846i \(-0.0523901\pi\)
\(150\) 0 0
\(151\) 10.3923i 0.845714i 0.906196 + 0.422857i \(0.138973\pi\)
−0.906196 + 0.422857i \(0.861027\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.92820 3.46410i −0.556487 0.278243i
\(156\) 0 0
\(157\) −11.0000 + 11.0000i −0.877896 + 0.877896i −0.993317 0.115421i \(-0.963178\pi\)
0.115421 + 0.993317i \(0.463178\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 1.73205 1.73205i 0.135665 0.135665i −0.636013 0.771678i \(-0.719418\pi\)
0.771678 + 0.636013i \(0.219418\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.5885 + 15.5885i 1.20627 + 1.20627i 0.972226 + 0.234045i \(0.0751964\pi\)
0.234045 + 0.972226i \(0.424804\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.0000 + 15.0000i 1.14043 + 1.14043i 0.988372 + 0.152057i \(0.0485898\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) −1.73205 + 12.1244i −0.130931 + 0.916515i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.92820 0.517838 0.258919 0.965899i \(-0.416634\pi\)
0.258919 + 0.965899i \(0.416634\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.00000 15.0000i −0.367607 1.10282i
\(186\) 0 0
\(187\) 3.46410 + 3.46410i 0.253320 + 0.253320i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.2487i 1.75458i −0.479965 0.877288i \(-0.659351\pi\)
0.479965 0.877288i \(-0.340649\pi\)
\(192\) 0 0
\(193\) 1.00000 + 1.00000i 0.0719816 + 0.0719816i 0.742181 0.670199i \(-0.233791\pi\)
−0.670199 + 0.742181i \(0.733791\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.00000 3.00000i 0.213741 0.213741i −0.592113 0.805855i \(-0.701706\pi\)
0.805855 + 0.592113i \(0.201706\pi\)
\(198\) 0 0
\(199\) 13.8564 0.982255 0.491127 0.871088i \(-0.336585\pi\)
0.491127 + 0.871088i \(0.336585\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.92820 + 6.92820i −0.486265 + 0.486265i
\(204\) 0 0
\(205\) −2.00000 + 4.00000i −0.139686 + 0.279372i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 24.0000i 1.66011i
\(210\) 0 0
\(211\) 10.3923i 0.715436i −0.933830 0.357718i \(-0.883555\pi\)
0.933830 0.357718i \(-0.116445\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.73205 5.19615i −0.118125 0.354375i
\(216\) 0 0
\(217\) −6.00000 + 6.00000i −0.407307 + 0.407307i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 15.5885 15.5885i 1.04388 1.04388i 0.0448883 0.998992i \(-0.485707\pi\)
0.998992 0.0448883i \(-0.0142932\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.66025 + 8.66025i 0.574801 + 0.574801i 0.933466 0.358665i \(-0.116768\pi\)
−0.358665 + 0.933466i \(0.616768\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i −0.750546 0.660819i \(-0.770209\pi\)
0.750546 0.660819i \(-0.229791\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 1.00000i −0.0655122 0.0655122i 0.673592 0.739104i \(-0.264751\pi\)
−0.739104 + 0.673592i \(0.764751\pi\)
\(234\) 0 0
\(235\) 5.19615 1.73205i 0.338960 0.112987i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −27.7128 −1.79259 −0.896296 0.443455i \(-0.853752\pi\)
−0.896296 + 0.443455i \(0.853752\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.00000 1.00000i −0.127775 0.0638877i
\(246\) 0 0
\(247\) −6.92820 6.92820i −0.440831 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.46410i 0.218652i −0.994006 0.109326i \(-0.965131\pi\)
0.994006 0.109326i \(-0.0348693\pi\)
\(252\) 0 0
\(253\) 6.00000 + 6.00000i 0.377217 + 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.00000 + 9.00000i −0.561405 + 0.561405i −0.929706 0.368302i \(-0.879939\pi\)
0.368302 + 0.929706i \(0.379939\pi\)
\(258\) 0 0
\(259\) −17.3205 −1.07624
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.1244 12.1244i 0.747620 0.747620i −0.226412 0.974032i \(-0.572700\pi\)
0.974032 + 0.226412i \(0.0726995\pi\)
\(264\) 0 0
\(265\) 21.0000 7.00000i 1.29002 0.430007i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.00000i 0.243884i 0.992537 + 0.121942i \(0.0389122\pi\)
−0.992537 + 0.121942i \(0.961088\pi\)
\(270\) 0 0
\(271\) 3.46410i 0.210429i −0.994450 0.105215i \(-0.966447\pi\)
0.994450 0.105215i \(-0.0335529\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.8564 + 10.3923i −0.835573 + 0.626680i
\(276\) 0 0
\(277\) 13.0000 13.0000i 0.781094 0.781094i −0.198921 0.980015i \(-0.563744\pi\)
0.980015 + 0.198921i \(0.0637438\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.0000 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(282\) 0 0
\(283\) −12.1244 + 12.1244i −0.720718 + 0.720718i −0.968751 0.248033i \(-0.920216\pi\)
0.248033 + 0.968751i \(0.420216\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.46410 + 3.46410i 0.204479 + 0.204479i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.00000 9.00000i −0.525786 0.525786i 0.393527 0.919313i \(-0.371255\pi\)
−0.919313 + 0.393527i \(0.871255\pi\)
\(294\) 0 0
\(295\) −6.92820 + 13.8564i −0.403376 + 0.806751i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.46410 −0.200334
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 12.0000i 0.343559 0.687118i
\(306\) 0 0
\(307\) 5.19615 + 5.19615i 0.296560 + 0.296560i 0.839665 0.543105i \(-0.182751\pi\)
−0.543105 + 0.839665i \(0.682751\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 17.3205i 0.982156i 0.871116 + 0.491078i \(0.163397\pi\)
−0.871116 + 0.491078i \(0.836603\pi\)
\(312\) 0 0
\(313\) −7.00000 7.00000i −0.395663 0.395663i 0.481037 0.876700i \(-0.340260\pi\)
−0.876700 + 0.481037i \(0.840260\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.0000 19.0000i 1.06715 1.06715i 0.0695692 0.997577i \(-0.477838\pi\)
0.997577 0.0695692i \(-0.0221625\pi\)
\(318\) 0 0
\(319\) −13.8564 −0.775810
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.92820 6.92820i 0.385496 0.385496i
\(324\) 0 0
\(325\) 1.00000 7.00000i 0.0554700 0.388290i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.00000i 0.330791i
\(330\) 0 0
\(331\) 24.2487i 1.33283i −0.745581 0.666415i \(-0.767828\pi\)
0.745581 0.666415i \(-0.232172\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.5885 5.19615i 0.851688 0.283896i
\(336\) 0 0
\(337\) 1.00000 1.00000i 0.0544735 0.0544735i −0.679345 0.733819i \(-0.737736\pi\)
0.733819 + 0.679345i \(0.237736\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) −13.8564 + 13.8564i −0.748176 + 0.748176i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.19615 5.19615i −0.278944 0.278944i 0.553743 0.832687i \(-0.313199\pi\)
−0.832687 + 0.553743i \(0.813199\pi\)
\(348\) 0 0
\(349\) 12.0000i 0.642345i −0.947021 0.321173i \(-0.895923\pi\)
0.947021 0.321173i \(-0.104077\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.00000 1.00000i −0.0532246 0.0532246i 0.679994 0.733218i \(-0.261983\pi\)
−0.733218 + 0.679994i \(0.761983\pi\)
\(354\) 0 0
\(355\) −20.7846 10.3923i −1.10313 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.8564 −0.731313 −0.365657 0.930750i \(-0.619156\pi\)
−0.365657 + 0.930750i \(0.619156\pi\)
\(360\) 0 0
\(361\) 29.0000 1.52632
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.0000 + 7.00000i −1.09919 + 0.366397i
\(366\) 0 0
\(367\) −15.5885 15.5885i −0.813711 0.813711i 0.171477 0.985188i \(-0.445146\pi\)
−0.985188 + 0.171477i \(0.945146\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 24.2487i 1.25893i
\(372\) 0 0
\(373\) 1.00000 + 1.00000i 0.0517780 + 0.0517780i 0.732522 0.680744i \(-0.238343\pi\)
−0.680744 + 0.732522i \(0.738343\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.00000 4.00000i 0.206010 0.206010i
\(378\) 0 0
\(379\) 6.92820 0.355878 0.177939 0.984042i \(-0.443057\pi\)
0.177939 + 0.984042i \(0.443057\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.5885 + 15.5885i −0.796533 + 0.796533i −0.982547 0.186014i \(-0.940443\pi\)
0.186014 + 0.982547i \(0.440443\pi\)
\(384\) 0 0
\(385\) 6.00000 + 18.0000i 0.305788 + 0.917365i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.0000i 1.01404i −0.861934 0.507020i \(-0.830747\pi\)
0.861934 0.507020i \(-0.169253\pi\)
\(390\) 0 0
\(391\) 3.46410i 0.175187i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11.0000 + 11.0000i −0.552074 + 0.552074i −0.927039 0.374965i \(-0.877655\pi\)
0.374965 + 0.927039i \(0.377655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 3.46410 3.46410i 0.172559 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −17.3205 17.3205i −0.858546 0.858546i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000 + 12.0000i 0.590481 + 0.590481i
\(414\) 0 0
\(415\) −12.1244 36.3731i −0.595161 1.78548i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.92820 0.338465 0.169232 0.985576i \(-0.445871\pi\)
0.169232 + 0.985576i \(0.445871\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.00000 + 1.00000i 0.339550 + 0.0485071i
\(426\) 0 0
\(427\) −10.3923 10.3923i −0.502919 0.502919i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.46410i 0.166860i 0.996514 + 0.0834300i \(0.0265875\pi\)
−0.996514 + 0.0834300i \(0.973413\pi\)
\(432\) 0 0
\(433\) −7.00000 7.00000i −0.336399 0.336399i 0.518611 0.855010i \(-0.326449\pi\)
−0.855010 + 0.518611i \(0.826449\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000 12.0000i 0.574038 0.574038i
\(438\) 0 0
\(439\) −13.8564 −0.661330 −0.330665 0.943748i \(-0.607273\pi\)
−0.330665 + 0.943748i \(0.607273\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.1244 12.1244i 0.576046 0.576046i −0.357766 0.933811i \(-0.616461\pi\)
0.933811 + 0.357766i \(0.116461\pi\)
\(444\) 0 0
\(445\) −16.0000 8.00000i −0.758473 0.379236i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.00000i 0.377543i 0.982021 + 0.188772i \(0.0604506\pi\)
−0.982021 + 0.188772i \(0.939549\pi\)
\(450\) 0 0
\(451\) 6.92820i 0.326236i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.92820 3.46410i −0.324799 0.162400i
\(456\) 0 0
\(457\) 17.0000 17.0000i 0.795226 0.795226i −0.187112 0.982339i \(-0.559913\pi\)
0.982339 + 0.187112i \(0.0599128\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) 1.73205 1.73205i 0.0804952 0.0804952i −0.665713 0.746208i \(-0.731872\pi\)
0.746208 + 0.665713i \(0.231872\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.0526 19.0526i −0.881647 0.881647i 0.112055 0.993702i \(-0.464257\pi\)
−0.993702 + 0.112055i \(0.964257\pi\)
\(468\) 0 0
\(469\) 18.0000i 0.831163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.00000 6.00000i −0.275880 0.275880i
\(474\) 0 0
\(475\) 20.7846 + 27.7128i 0.953663 + 1.27155i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.7128 1.26623 0.633115 0.774057i \(-0.281776\pi\)
0.633115 + 0.774057i \(0.281776\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.00000 + 21.0000i 0.317854 + 0.953561i
\(486\) 0 0
\(487\) −1.73205 1.73205i −0.0784867 0.0784867i 0.666774 0.745260i \(-0.267675\pi\)
−0.745260 + 0.666774i \(0.767675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.2487i 1.09433i 0.837025 + 0.547165i \(0.184293\pi\)
−0.837025 + 0.547165i \(0.815707\pi\)
\(492\) 0 0
\(493\) 4.00000 + 4.00000i 0.180151 + 0.180151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.0000 + 18.0000i −0.807410 + 0.807410i
\(498\) 0 0
\(499\) 20.7846 0.930447 0.465223 0.885193i \(-0.345974\pi\)
0.465223 + 0.885193i \(0.345974\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.73205 + 1.73205i −0.0772283 + 0.0772283i −0.744666 0.667437i \(-0.767391\pi\)
0.667437 + 0.744666i \(0.267391\pi\)
\(504\) 0 0
\(505\) 10.0000 20.0000i 0.444994 0.889988i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.0000i 0.886484i −0.896402 0.443242i \(-0.853828\pi\)
0.896402 0.443242i \(-0.146172\pi\)
\(510\) 0 0
\(511\) 24.2487i 1.07270i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.73205 5.19615i −0.0763233 0.228970i
\(516\) 0 0
\(517\) 6.00000 6.00000i 0.263880 0.263880i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 38.0000 1.66481 0.832405 0.554168i \(-0.186963\pi\)
0.832405 + 0.554168i \(0.186963\pi\)
\(522\) 0 0
\(523\) −12.1244 + 12.1244i −0.530161 + 0.530161i −0.920620 0.390459i \(-0.872316\pi\)
0.390459 + 0.920620i \(0.372316\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.46410 + 3.46410i 0.150899 + 0.150899i
\(528\) 0 0
\(529\) 17.0000i 0.739130i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.00000 2.00000i −0.0866296 0.0866296i
\(534\) 0 0
\(535\) 25.9808 8.66025i 1.12325 0.374415i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.46410 −0.149209
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 24.0000 + 12.0000i 1.02805 + 0.514024i
\(546\) 0 0
\(547\) −8.66025 8.66025i −0.370286 0.370286i 0.497296 0.867581i \(-0.334326\pi\)
−0.867581 + 0.497296i \(0.834326\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 27.7128i 1.18061i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −29.0000 + 29.0000i −1.22877 + 1.22877i −0.264340 + 0.964430i \(0.585154\pi\)
−0.964430 + 0.264340i \(0.914846\pi\)
\(558\) 0 0
\(559\) 3.46410 0.146516
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.4449 + 29.4449i −1.24095 + 1.24095i −0.281347 + 0.959606i \(0.590781\pi\)
−0.959606 + 0.281347i \(0.909219\pi\)
\(564\) 0 0
\(565\) −27.0000 + 9.00000i −1.13590 + 0.378633i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.0000i 0.670755i 0.942084 + 0.335377i \(0.108864\pi\)
−0.942084 + 0.335377i \(0.891136\pi\)
\(570\) 0 0
\(571\) 31.1769i 1.30471i 0.757912 + 0.652357i \(0.226220\pi\)
−0.757912 + 0.652357i \(0.773780\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.1244 + 1.73205i 0.505621 + 0.0722315i
\(576\) 0 0
\(577\) −7.00000 + 7.00000i −0.291414 + 0.291414i −0.837639 0.546225i \(-0.816064\pi\)
0.546225 + 0.837639i \(0.316064\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −42.0000 −1.74245
\(582\) 0 0
\(583\) 24.2487 24.2487i 1.00428 1.00428i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.19615 5.19615i −0.214468 0.214468i 0.591694 0.806162i \(-0.298459\pi\)
−0.806162 + 0.591694i \(0.798459\pi\)
\(588\) 0 0
\(589\) 24.0000i 0.988903i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −33.0000 33.0000i −1.35515 1.35515i −0.879796 0.475352i \(-0.842321\pi\)
−0.475352 0.879796i \(-0.657679\pi\)
\(594\) 0 0
\(595\) 3.46410 6.92820i 0.142014 0.284029i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13.8564 0.566157 0.283079 0.959097i \(-0.408644\pi\)
0.283079 + 0.959097i \(0.408644\pi\)
\(600\) 0 0
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 + 2.00000i −0.0406558 + 0.0813116i
\(606\) 0 0
\(607\) 25.9808 + 25.9808i 1.05453 + 1.05453i 0.998425 + 0.0561015i \(0.0178671\pi\)
0.0561015 + 0.998425i \(0.482133\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.46410i 0.140143i
\(612\) 0 0
\(613\) −31.0000 31.0000i −1.25208 1.25208i −0.954787 0.297291i \(-0.903917\pi\)
−0.297291 0.954787i \(-0.596083\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.00000 7.00000i 0.281809 0.281809i −0.552021 0.833830i \(-0.686143\pi\)
0.833830 + 0.552021i \(0.186143\pi\)
\(618\) 0 0
\(619\) −20.7846 −0.835404 −0.417702 0.908584i \(-0.637164\pi\)
−0.417702 + 0.908584i \(0.637164\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.8564 + 13.8564i −0.555145 + 0.555145i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.0000i 0.398726i
\(630\) 0 0
\(631\) 17.3205i 0.689519i −0.938691 0.344759i \(-0.887961\pi\)
0.938691 0.344759i \(-0.112039\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 36.3731 12.1244i 1.44342 0.481140i
\(636\) 0 0
\(637\) 1.00000 1.00000i 0.0396214 0.0396214i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −26.0000 −1.02694 −0.513469 0.858108i \(-0.671640\pi\)
−0.513469 + 0.858108i \(0.671640\pi\)
\(642\) 0 0
\(643\) 15.5885 15.5885i 0.614749 0.614749i −0.329431 0.944180i \(-0.606857\pi\)
0.944180 + 0.329431i \(0.106857\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.73205 + 1.73205i 0.0680939 + 0.0680939i 0.740334 0.672240i \(-0.234668\pi\)
−0.672240 + 0.740334i \(0.734668\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.0000 + 23.0000i 0.900060 + 0.900060i 0.995441 0.0953813i \(-0.0304070\pi\)
−0.0953813 + 0.995441i \(0.530407\pi\)
\(654\) 0 0
\(655\) 20.7846 + 10.3923i 0.812122 + 0.406061i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.6410 1.34942 0.674711 0.738082i \(-0.264268\pi\)
0.674711 + 0.738082i \(0.264268\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 36.0000 12.0000i 1.39602 0.465340i
\(666\) 0 0
\(667\) 6.92820 + 6.92820i 0.268261 + 0.268261i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 20.7846i 0.802381i
\(672\) 0 0
\(673\) 25.0000 + 25.0000i 0.963679 + 0.963679i 0.999363 0.0356839i \(-0.0113610\pi\)
−0.0356839 + 0.999363i \(0.511361\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.0000 35.0000i 1.34516 1.34516i 0.454321 0.890838i \(-0.349882\pi\)
0.890838 0.454321i \(-0.150118\pi\)
\(678\) 0 0
\(679\) 24.2487 0.930580
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.73205 + 1.73205i −0.0662751 + 0.0662751i −0.739467 0.673192i \(-0.764923\pi\)
0.673192 + 0.739467i \(0.264923\pi\)
\(684\) 0 0
\(685\) 9.00000 + 27.0000i 0.343872 + 1.03162i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.0000i 0.533358i
\(690\) 0 0
\(691\) 45.0333i 1.71315i 0.516024 + 0.856574i \(0.327412\pi\)
−0.516024 + 0.856574i \(0.672588\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.92820 13.8564i 0.262802 0.525603i
\(696\) 0 0
\(697\) 2.00000 2.00000i 0.0757554 0.0757554i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.0000 −1.43524 −0.717620 0.696435i \(-0.754769\pi\)
−0.717620 + 0.696435i \(0.754769\pi\)
\(702\) 0 0
\(703\) −34.6410 + 34.6410i −1.30651 + 1.30651i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −17.3205 17.3205i −0.651405 0.651405i
\(708\) 0 0
\(709\) 4.00000i 0.150223i −0.997175 0.0751116i \(-0.976069\pi\)
0.997175 0.0751116i \(-0.0239313\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.00000 + 6.00000i 0.224702 + 0.224702i
\(714\) 0 0
\(715\) −3.46410 10.3923i −0.129550 0.388650i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 27.7128 1.03351 0.516757 0.856132i \(-0.327139\pi\)
0.516757 + 0.856132i \(0.327139\pi\)
\(720\) 0 0
\(721\) −6.00000 −0.223452
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −16.0000 + 12.0000i −0.594225 + 0.445669i
\(726\) 0 0
\(727\) −1.73205 1.73205i −0.0642382 0.0642382i 0.674258 0.738496i \(-0.264464\pi\)
−0.738496 + 0.674258i \(0.764464\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.46410i 0.128124i
\(732\) 0 0
\(733\) 1.00000 + 1.00000i 0.0369358 + 0.0369358i 0.725333 0.688398i \(-0.241686\pi\)
−0.688398 + 0.725333i \(0.741686\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.0000 18.0000i 0.663039 0.663039i
\(738\) 0 0
\(739\) 20.7846 0.764574 0.382287 0.924044i \(-0.375137\pi\)
0.382287 + 0.924044i \(0.375137\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.1244 12.1244i 0.444799 0.444799i −0.448822 0.893621i \(-0.648156\pi\)
0.893621 + 0.448822i \(0.148156\pi\)
\(744\) 0 0
\(745\) −8.00000 4.00000i −0.293097 0.146549i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 30.0000i 1.09618i
\(750\) 0 0
\(751\) 3.46410i 0.126407i −0.998001 0.0632034i \(-0.979868\pi\)
0.998001 0.0632034i \(-0.0201317\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 20.7846 + 10.3923i 0.756429 + 0.378215i
\(756\) 0 0
\(757\) 29.0000 29.0000i 1.05402 1.05402i 0.0555680 0.998455i \(-0.482303\pi\)
0.998455 0.0555680i \(-0.0176970\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 20.7846 20.7846i 0.752453 0.752453i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.92820 6.92820i −0.250163 0.250163i
\(768\) 0 0
\(769\) 48.0000i 1.73092i 0.500974 + 0.865462i \(0.332975\pi\)
−0.500974 + 0.865462i \(0.667025\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.00000 1.00000i −0.0359675 0.0359675i 0.688894 0.724862i \(-0.258096\pi\)
−0.724862 + 0.688894i \(0.758096\pi\)
\(774\) 0 0
\(775\) −13.8564 + 10.3923i −0.497737 + 0.373303i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.8564 0.496457
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.0000 + 33.0000i 0.392607 + 1.17782i
\(786\) 0 0
\(787\) 5.19615 + 5.19615i 0.185223 + 0.185223i 0.793627 0.608404i \(-0.208190\pi\)
−0.608404 + 0.793627i \(0.708190\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 31.1769i 1.10852i
\(792\) 0 0
\(793\) 6.00000 + 6.00000i 0.213066 + 0.213066i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.00000 3.00000i 0.106265 0.106265i −0.651975 0.758240i \(-0.726059\pi\)
0.758240 + 0.651975i \(0.226059\pi\)
\(798\)