Properties

Label 720.2.t.c.541.4
Level $720$
Weight $2$
Character 720.541
Analytic conductor $5.749$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(181,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 541.4
Root \(-1.39563 - 0.228522i\) of defining polynomial
Character \(\chi\) \(=\) 720.541
Dual form 720.2.t.c.181.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.114638 + 1.40956i) q^{2} +(-1.97372 - 0.323179i) q^{4} +(-0.707107 + 0.707107i) q^{5} -0.690576i q^{7} +(0.681804 - 2.74502i) q^{8} +(-0.915648 - 1.07777i) q^{10} +(3.06057 - 3.06057i) q^{11} +(-2.33686 - 2.33686i) q^{13} +(0.973408 + 0.0791665i) q^{14} +(3.79111 + 1.27573i) q^{16} +5.28770 q^{17} +(5.38887 + 5.38887i) q^{19} +(1.62415 - 1.16711i) q^{20} +(3.96320 + 4.66492i) q^{22} +1.60841i q^{23} -1.00000i q^{25} +(3.56183 - 3.02605i) q^{26} +(-0.223180 + 1.36300i) q^{28} +(-1.70319 - 1.70319i) q^{29} -4.69807 q^{31} +(-2.23282 + 5.19755i) q^{32} +(-0.606174 + 7.45333i) q^{34} +(0.488311 + 0.488311i) q^{35} +(7.89871 - 7.89871i) q^{37} +(-8.21371 + 6.97817i) q^{38} +(1.45892 + 2.42313i) q^{40} +5.49891i q^{41} +(-0.256166 + 0.256166i) q^{43} +(-7.02981 + 5.05159i) q^{44} +(-2.26715 - 0.184385i) q^{46} +4.60743 q^{47} +6.52310 q^{49} +(1.40956 + 0.114638i) q^{50} +(3.85707 + 5.36752i) q^{52} +(4.99318 - 4.99318i) q^{53} +4.32830i q^{55} +(-1.89565 - 0.470837i) q^{56} +(2.59600 - 2.20549i) q^{58} +(-1.46478 + 1.46478i) q^{59} +(9.33004 + 9.33004i) q^{61} +(0.538579 - 6.62221i) q^{62} +(-7.07029 - 3.74313i) q^{64} +3.30482 q^{65} +(-1.94797 - 1.94797i) q^{67} +(-10.4364 - 1.70888i) q^{68} +(-0.744283 + 0.632324i) q^{70} +2.32246i q^{71} -1.29733i q^{73} +(10.2282 + 12.0392i) q^{74} +(-8.89454 - 12.3777i) q^{76} +(-2.11356 - 2.11356i) q^{77} -5.01968 q^{79} +(-3.58280 + 1.77864i) q^{80} +(-7.75103 - 0.630385i) q^{82} +(-7.30477 - 7.30477i) q^{83} +(-3.73897 + 3.73897i) q^{85} +(-0.331715 - 0.390448i) q^{86} +(-6.31463 - 10.4880i) q^{88} -1.81564i q^{89} +(-1.61378 + 1.61378i) q^{91} +(0.519803 - 3.17454i) q^{92} +(-0.528188 + 6.49445i) q^{94} -7.62102 q^{95} +5.27038 q^{97} +(-0.747798 + 9.19470i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} + 4 q^{10} + 8 q^{11} - 4 q^{14} + 16 q^{16} - 8 q^{19} - 8 q^{20} - 20 q^{22} + 16 q^{26} - 4 q^{28} + 16 q^{29} + 16 q^{34} - 16 q^{37} - 20 q^{38} + 8 q^{43} - 40 q^{44} - 4 q^{46} + 40 q^{47}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.114638 + 1.40956i −0.0810615 + 0.996709i
\(3\) 0 0
\(4\) −1.97372 0.323179i −0.986858 0.161590i
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 0.690576i 0.261013i −0.991447 0.130507i \(-0.958340\pi\)
0.991447 0.130507i \(-0.0416604\pi\)
\(8\) 0.681804 2.74502i 0.241054 0.970512i
\(9\) 0 0
\(10\) −0.915648 1.07777i −0.289553 0.340821i
\(11\) 3.06057 3.06057i 0.922797 0.922797i −0.0744292 0.997226i \(-0.523713\pi\)
0.997226 + 0.0744292i \(0.0237135\pi\)
\(12\) 0 0
\(13\) −2.33686 2.33686i −0.648128 0.648128i 0.304413 0.952540i \(-0.401540\pi\)
−0.952540 + 0.304413i \(0.901540\pi\)
\(14\) 0.973408 + 0.0791665i 0.260154 + 0.0211581i
\(15\) 0 0
\(16\) 3.79111 + 1.27573i 0.947778 + 0.318932i
\(17\) 5.28770 1.28246 0.641228 0.767350i \(-0.278425\pi\)
0.641228 + 0.767350i \(0.278425\pi\)
\(18\) 0 0
\(19\) 5.38887 + 5.38887i 1.23629 + 1.23629i 0.961505 + 0.274787i \(0.0886075\pi\)
0.274787 + 0.961505i \(0.411393\pi\)
\(20\) 1.62415 1.16711i 0.363171 0.260973i
\(21\) 0 0
\(22\) 3.96320 + 4.66492i 0.844957 + 0.994564i
\(23\) 1.60841i 0.335376i 0.985840 + 0.167688i \(0.0536301\pi\)
−0.985840 + 0.167688i \(0.946370\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 3.56183 3.02605i 0.698533 0.593457i
\(27\) 0 0
\(28\) −0.223180 + 1.36300i −0.0421770 + 0.257583i
\(29\) −1.70319 1.70319i −0.316274 0.316274i 0.531060 0.847334i \(-0.321794\pi\)
−0.847334 + 0.531060i \(0.821794\pi\)
\(30\) 0 0
\(31\) −4.69807 −0.843798 −0.421899 0.906643i \(-0.638636\pi\)
−0.421899 + 0.906643i \(0.638636\pi\)
\(32\) −2.23282 + 5.19755i −0.394711 + 0.918805i
\(33\) 0 0
\(34\) −0.606174 + 7.45333i −0.103958 + 1.27824i
\(35\) 0.488311 + 0.488311i 0.0825396 + 0.0825396i
\(36\) 0 0
\(37\) 7.89871 7.89871i 1.29854 1.29854i 0.369185 0.929356i \(-0.379637\pi\)
0.929356 0.369185i \(-0.120363\pi\)
\(38\) −8.21371 + 6.97817i −1.33244 + 1.13201i
\(39\) 0 0
\(40\) 1.45892 + 2.42313i 0.230675 + 0.383131i
\(41\) 5.49891i 0.858785i 0.903118 + 0.429392i \(0.141272\pi\)
−0.903118 + 0.429392i \(0.858728\pi\)
\(42\) 0 0
\(43\) −0.256166 + 0.256166i −0.0390650 + 0.0390650i −0.726369 0.687304i \(-0.758794\pi\)
0.687304 + 0.726369i \(0.258794\pi\)
\(44\) −7.02981 + 5.05159i −1.05978 + 0.761555i
\(45\) 0 0
\(46\) −2.26715 0.184385i −0.334272 0.0271861i
\(47\) 4.60743 0.672063 0.336032 0.941851i \(-0.390915\pi\)
0.336032 + 0.941851i \(0.390915\pi\)
\(48\) 0 0
\(49\) 6.52310 0.931872
\(50\) 1.40956 + 0.114638i 0.199342 + 0.0162123i
\(51\) 0 0
\(52\) 3.85707 + 5.36752i 0.534879 + 0.744341i
\(53\) 4.99318 4.99318i 0.685866 0.685866i −0.275449 0.961316i \(-0.588827\pi\)
0.961316 + 0.275449i \(0.0888266\pi\)
\(54\) 0 0
\(55\) 4.32830i 0.583628i
\(56\) −1.89565 0.470837i −0.253316 0.0629183i
\(57\) 0 0
\(58\) 2.59600 2.20549i 0.340871 0.289596i
\(59\) −1.46478 + 1.46478i −0.190698 + 0.190698i −0.795998 0.605300i \(-0.793053\pi\)
0.605300 + 0.795998i \(0.293053\pi\)
\(60\) 0 0
\(61\) 9.33004 + 9.33004i 1.19459 + 1.19459i 0.975764 + 0.218825i \(0.0702224\pi\)
0.218825 + 0.975764i \(0.429778\pi\)
\(62\) 0.538579 6.62221i 0.0683996 0.841021i
\(63\) 0 0
\(64\) −7.07029 3.74313i −0.883786 0.467891i
\(65\) 3.30482 0.409912
\(66\) 0 0
\(67\) −1.94797 1.94797i −0.237982 0.237982i 0.578032 0.816014i \(-0.303821\pi\)
−0.816014 + 0.578032i \(0.803821\pi\)
\(68\) −10.4364 1.70888i −1.26560 0.207232i
\(69\) 0 0
\(70\) −0.744283 + 0.632324i −0.0889588 + 0.0755772i
\(71\) 2.32246i 0.275625i 0.990458 + 0.137813i \(0.0440072\pi\)
−0.990458 + 0.137813i \(0.955993\pi\)
\(72\) 0 0
\(73\) 1.29733i 0.151841i −0.997114 0.0759206i \(-0.975810\pi\)
0.997114 0.0759206i \(-0.0241896\pi\)
\(74\) 10.2282 + 12.0392i 1.18901 + 1.39953i
\(75\) 0 0
\(76\) −8.89454 12.3777i −1.02027 1.41982i
\(77\) −2.11356 2.11356i −0.240862 0.240862i
\(78\) 0 0
\(79\) −5.01968 −0.564758 −0.282379 0.959303i \(-0.591124\pi\)
−0.282379 + 0.959303i \(0.591124\pi\)
\(80\) −3.58280 + 1.77864i −0.400569 + 0.198858i
\(81\) 0 0
\(82\) −7.75103 0.630385i −0.855959 0.0696144i
\(83\) −7.30477 7.30477i −0.801802 0.801802i 0.181575 0.983377i \(-0.441881\pi\)
−0.983377 + 0.181575i \(0.941881\pi\)
\(84\) 0 0
\(85\) −3.73897 + 3.73897i −0.405548 + 0.405548i
\(86\) −0.331715 0.390448i −0.0357698 0.0421031i
\(87\) 0 0
\(88\) −6.31463 10.4880i −0.673141 1.11803i
\(89\) 1.81564i 0.192458i −0.995359 0.0962290i \(-0.969322\pi\)
0.995359 0.0962290i \(-0.0306781\pi\)
\(90\) 0 0
\(91\) −1.61378 + 1.61378i −0.169170 + 0.169170i
\(92\) 0.519803 3.17454i 0.0541933 0.330969i
\(93\) 0 0
\(94\) −0.528188 + 6.49445i −0.0544785 + 0.669851i
\(95\) −7.62102 −0.781900
\(96\) 0 0
\(97\) 5.27038 0.535126 0.267563 0.963540i \(-0.413782\pi\)
0.267563 + 0.963540i \(0.413782\pi\)
\(98\) −0.747798 + 9.19470i −0.0755390 + 0.928805i
\(99\) 0 0
\(100\) −0.323179 + 1.97372i −0.0323179 + 0.197372i
\(101\) 13.4502 13.4502i 1.33834 1.33834i 0.440675 0.897667i \(-0.354739\pi\)
0.897667 0.440675i \(-0.145261\pi\)
\(102\) 0 0
\(103\) 2.64310i 0.260432i −0.991486 0.130216i \(-0.958433\pi\)
0.991486 0.130216i \(-0.0415671\pi\)
\(104\) −8.00800 + 4.82145i −0.785249 + 0.472782i
\(105\) 0 0
\(106\) 6.46578 + 7.61060i 0.628012 + 0.739207i
\(107\) 6.28120 6.28120i 0.607227 0.607227i −0.334994 0.942220i \(-0.608734\pi\)
0.942220 + 0.334994i \(0.108734\pi\)
\(108\) 0 0
\(109\) −6.89216 6.89216i −0.660149 0.660149i 0.295266 0.955415i \(-0.404592\pi\)
−0.955415 + 0.295266i \(0.904592\pi\)
\(110\) −6.10100 0.496189i −0.581707 0.0473098i
\(111\) 0 0
\(112\) 0.880987 2.61805i 0.0832454 0.247382i
\(113\) −6.46108 −0.607807 −0.303904 0.952703i \(-0.598290\pi\)
−0.303904 + 0.952703i \(0.598290\pi\)
\(114\) 0 0
\(115\) −1.13732 1.13732i −0.106055 0.106055i
\(116\) 2.81117 + 3.91204i 0.261011 + 0.363224i
\(117\) 0 0
\(118\) −1.89677 2.23261i −0.174612 0.205528i
\(119\) 3.65156i 0.334738i
\(120\) 0 0
\(121\) 7.73420i 0.703109i
\(122\) −14.2208 + 12.0817i −1.28749 + 1.09382i
\(123\) 0 0
\(124\) 9.27265 + 1.51832i 0.832709 + 0.136349i
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) −16.6123 −1.47411 −0.737054 0.675834i \(-0.763784\pi\)
−0.737054 + 0.675834i \(0.763784\pi\)
\(128\) 6.08669 9.53688i 0.537993 0.842949i
\(129\) 0 0
\(130\) −0.378859 + 4.65834i −0.0332281 + 0.408563i
\(131\) 11.7719 + 11.7719i 1.02851 + 1.02851i 0.999581 + 0.0289318i \(0.00921056\pi\)
0.0289318 + 0.999581i \(0.490789\pi\)
\(132\) 0 0
\(133\) 3.72143 3.72143i 0.322689 0.322689i
\(134\) 2.96909 2.52247i 0.256490 0.217908i
\(135\) 0 0
\(136\) 3.60518 14.5149i 0.309141 1.24464i
\(137\) 8.41495i 0.718937i 0.933157 + 0.359469i \(0.117042\pi\)
−0.933157 + 0.359469i \(0.882958\pi\)
\(138\) 0 0
\(139\) −1.51845 + 1.51845i −0.128793 + 0.128793i −0.768565 0.639772i \(-0.779029\pi\)
0.639772 + 0.768565i \(0.279029\pi\)
\(140\) −0.805975 1.12160i −0.0681174 0.0947924i
\(141\) 0 0
\(142\) −3.27364 0.266243i −0.274718 0.0223426i
\(143\) −14.3042 −1.19618
\(144\) 0 0
\(145\) 2.40867 0.200029
\(146\) 1.82867 + 0.148724i 0.151342 + 0.0123085i
\(147\) 0 0
\(148\) −18.1425 + 13.0371i −1.49131 + 1.07164i
\(149\) 2.61440 2.61440i 0.214180 0.214180i −0.591860 0.806040i \(-0.701606\pi\)
0.806040 + 0.591860i \(0.201606\pi\)
\(150\) 0 0
\(151\) 12.7143i 1.03467i 0.855782 + 0.517337i \(0.173077\pi\)
−0.855782 + 0.517337i \(0.826923\pi\)
\(152\) 18.4667 11.1184i 1.49785 0.901823i
\(153\) 0 0
\(154\) 3.22148 2.73689i 0.259594 0.220545i
\(155\) 3.32204 3.32204i 0.266832 0.266832i
\(156\) 0 0
\(157\) −7.17831 7.17831i −0.572891 0.572891i 0.360044 0.932935i \(-0.382762\pi\)
−0.932935 + 0.360044i \(0.882762\pi\)
\(158\) 0.575448 7.07554i 0.0457802 0.562900i
\(159\) 0 0
\(160\) −2.09638 5.25406i −0.165733 0.415370i
\(161\) 1.11073 0.0875376
\(162\) 0 0
\(163\) −7.05476 7.05476i −0.552572 0.552572i 0.374611 0.927182i \(-0.377776\pi\)
−0.927182 + 0.374611i \(0.877776\pi\)
\(164\) 1.77713 10.8533i 0.138771 0.847499i
\(165\) 0 0
\(166\) 11.1339 9.45910i 0.864159 0.734168i
\(167\) 3.90586i 0.302244i 0.988515 + 0.151122i \(0.0482887\pi\)
−0.988515 + 0.151122i \(0.951711\pi\)
\(168\) 0 0
\(169\) 2.07819i 0.159861i
\(170\) −4.84167 5.69893i −0.371339 0.437088i
\(171\) 0 0
\(172\) 0.588387 0.422812i 0.0448641 0.0322391i
\(173\) −8.20139 8.20139i −0.623540 0.623540i 0.322895 0.946435i \(-0.395344\pi\)
−0.946435 + 0.322895i \(0.895344\pi\)
\(174\) 0 0
\(175\) −0.690576 −0.0522026
\(176\) 15.5074 7.69851i 1.16892 0.580297i
\(177\) 0 0
\(178\) 2.55926 + 0.208142i 0.191825 + 0.0156009i
\(179\) 3.10363 + 3.10363i 0.231976 + 0.231976i 0.813517 0.581541i \(-0.197550\pi\)
−0.581541 + 0.813517i \(0.697550\pi\)
\(180\) 0 0
\(181\) −1.91041 + 1.91041i −0.141999 + 0.141999i −0.774533 0.632534i \(-0.782015\pi\)
0.632534 + 0.774533i \(0.282015\pi\)
\(182\) −2.08972 2.45972i −0.154900 0.182326i
\(183\) 0 0
\(184\) 4.41511 + 1.09662i 0.325486 + 0.0808437i
\(185\) 11.1705i 0.821269i
\(186\) 0 0
\(187\) 16.1834 16.1834i 1.18345 1.18345i
\(188\) −9.09376 1.48903i −0.663231 0.108598i
\(189\) 0 0
\(190\) 0.873661 10.7423i 0.0633820 0.779327i
\(191\) −5.61041 −0.405955 −0.202977 0.979183i \(-0.565062\pi\)
−0.202977 + 0.979183i \(0.565062\pi\)
\(192\) 0 0
\(193\) 3.90696 0.281229 0.140615 0.990064i \(-0.455092\pi\)
0.140615 + 0.990064i \(0.455092\pi\)
\(194\) −0.604187 + 7.42891i −0.0433781 + 0.533365i
\(195\) 0 0
\(196\) −12.8748 2.10813i −0.919625 0.150581i
\(197\) −0.608436 + 0.608436i −0.0433493 + 0.0433493i −0.728449 0.685100i \(-0.759759\pi\)
0.685100 + 0.728449i \(0.259759\pi\)
\(198\) 0 0
\(199\) 15.5282i 1.10076i 0.834913 + 0.550382i \(0.185518\pi\)
−0.834913 + 0.550382i \(0.814482\pi\)
\(200\) −2.74502 0.681804i −0.194102 0.0482108i
\(201\) 0 0
\(202\) 17.4169 + 20.5007i 1.22545 + 1.44243i
\(203\) −1.17618 + 1.17618i −0.0825517 + 0.0825517i
\(204\) 0 0
\(205\) −3.88831 3.88831i −0.271572 0.271572i
\(206\) 3.72560 + 0.303000i 0.259575 + 0.0211110i
\(207\) 0 0
\(208\) −5.87809 11.8405i −0.407572 0.820990i
\(209\) 32.9861 2.28169
\(210\) 0 0
\(211\) 2.14501 + 2.14501i 0.147669 + 0.147669i 0.777076 0.629407i \(-0.216702\pi\)
−0.629407 + 0.777076i \(0.716702\pi\)
\(212\) −11.4688 + 8.24143i −0.787681 + 0.566024i
\(213\) 0 0
\(214\) 8.13366 + 9.57380i 0.556006 + 0.654451i
\(215\) 0.362274i 0.0247069i
\(216\) 0 0
\(217\) 3.24437i 0.220242i
\(218\) 10.5050 8.92480i 0.711489 0.604464i
\(219\) 0 0
\(220\) 1.39882 8.54284i 0.0943082 0.575958i
\(221\) −12.3566 12.3566i −0.831196 0.831196i
\(222\) 0 0
\(223\) −2.34794 −0.157230 −0.0786148 0.996905i \(-0.525050\pi\)
−0.0786148 + 0.996905i \(0.525050\pi\)
\(224\) 3.58930 + 1.54193i 0.239820 + 0.103025i
\(225\) 0 0
\(226\) 0.740688 9.10728i 0.0492698 0.605807i
\(227\) −13.1881 13.1881i −0.875325 0.875325i 0.117722 0.993047i \(-0.462441\pi\)
−0.993047 + 0.117722i \(0.962441\pi\)
\(228\) 0 0
\(229\) 9.37860 9.37860i 0.619755 0.619755i −0.325713 0.945469i \(-0.605604\pi\)
0.945469 + 0.325713i \(0.105604\pi\)
\(230\) 1.73349 1.47273i 0.114303 0.0971092i
\(231\) 0 0
\(232\) −5.83653 + 3.51405i −0.383187 + 0.230709i
\(233\) 16.3435i 1.07070i −0.844630 0.535350i \(-0.820180\pi\)
0.844630 0.535350i \(-0.179820\pi\)
\(234\) 0 0
\(235\) −3.25795 + 3.25795i −0.212525 + 0.212525i
\(236\) 3.36444 2.41767i 0.219006 0.157377i
\(237\) 0 0
\(238\) 5.14709 + 0.418609i 0.333637 + 0.0271344i
\(239\) −19.3818 −1.25371 −0.626854 0.779137i \(-0.715658\pi\)
−0.626854 + 0.779137i \(0.715658\pi\)
\(240\) 0 0
\(241\) 7.15965 0.461193 0.230597 0.973049i \(-0.425932\pi\)
0.230597 + 0.973049i \(0.425932\pi\)
\(242\) 10.9018 + 0.886636i 0.700795 + 0.0569951i
\(243\) 0 0
\(244\) −15.3996 21.4301i −0.985857 1.37192i
\(245\) −4.61253 + 4.61253i −0.294684 + 0.294684i
\(246\) 0 0
\(247\) 25.1861i 1.60255i
\(248\) −3.20316 + 12.8963i −0.203401 + 0.818916i
\(249\) 0 0
\(250\) −1.07777 + 0.915648i −0.0681642 + 0.0579106i
\(251\) −10.4372 + 10.4372i −0.658787 + 0.658787i −0.955093 0.296306i \(-0.904245\pi\)
0.296306 + 0.955093i \(0.404245\pi\)
\(252\) 0 0
\(253\) 4.92264 + 4.92264i 0.309484 + 0.309484i
\(254\) 1.90441 23.4161i 0.119493 1.46926i
\(255\) 0 0
\(256\) 12.7450 + 9.67285i 0.796565 + 0.604553i
\(257\) −5.72152 −0.356899 −0.178449 0.983949i \(-0.557108\pi\)
−0.178449 + 0.983949i \(0.557108\pi\)
\(258\) 0 0
\(259\) −5.45466 5.45466i −0.338936 0.338936i
\(260\) −6.52277 1.06805i −0.404525 0.0662375i
\(261\) 0 0
\(262\) −17.9427 + 15.2436i −1.10850 + 0.941756i
\(263\) 27.1378i 1.67339i 0.547669 + 0.836695i \(0.315515\pi\)
−0.547669 + 0.836695i \(0.684485\pi\)
\(264\) 0 0
\(265\) 7.06143i 0.433780i
\(266\) 4.81895 + 5.67219i 0.295469 + 0.347784i
\(267\) 0 0
\(268\) 3.21519 + 4.47428i 0.196399 + 0.273310i
\(269\) −13.0770 13.0770i −0.797320 0.797320i 0.185352 0.982672i \(-0.440657\pi\)
−0.982672 + 0.185352i \(0.940657\pi\)
\(270\) 0 0
\(271\) 6.55264 0.398044 0.199022 0.979995i \(-0.436223\pi\)
0.199022 + 0.979995i \(0.436223\pi\)
\(272\) 20.0463 + 6.74567i 1.21548 + 0.409016i
\(273\) 0 0
\(274\) −11.8614 0.964675i −0.716571 0.0582782i
\(275\) −3.06057 3.06057i −0.184559 0.184559i
\(276\) 0 0
\(277\) −10.2851 + 10.2851i −0.617973 + 0.617973i −0.945011 0.327038i \(-0.893949\pi\)
0.327038 + 0.945011i \(0.393949\pi\)
\(278\) −1.96627 2.31442i −0.117929 0.138809i
\(279\) 0 0
\(280\) 1.67336 1.00749i 0.100002 0.0602092i
\(281\) 29.9714i 1.78794i 0.448124 + 0.893971i \(0.352092\pi\)
−0.448124 + 0.893971i \(0.647908\pi\)
\(282\) 0 0
\(283\) −19.1176 + 19.1176i −1.13642 + 1.13642i −0.147334 + 0.989087i \(0.547069\pi\)
−0.989087 + 0.147334i \(0.952931\pi\)
\(284\) 0.750570 4.58387i 0.0445381 0.272003i
\(285\) 0 0
\(286\) 1.63981 20.1627i 0.0969643 1.19224i
\(287\) 3.79741 0.224154
\(288\) 0 0
\(289\) 10.9598 0.644695
\(290\) −0.276126 + 3.39517i −0.0162147 + 0.199371i
\(291\) 0 0
\(292\) −0.419271 + 2.56056i −0.0245360 + 0.149846i
\(293\) −7.27952 + 7.27952i −0.425274 + 0.425274i −0.887015 0.461741i \(-0.847225\pi\)
0.461741 + 0.887015i \(0.347225\pi\)
\(294\) 0 0
\(295\) 2.07151i 0.120608i
\(296\) −16.2968 27.0675i −0.947230 1.57327i
\(297\) 0 0
\(298\) 3.38544 + 3.98486i 0.196113 + 0.230837i
\(299\) 3.75862 3.75862i 0.217366 0.217366i
\(300\) 0 0
\(301\) 0.176902 + 0.176902i 0.0101965 + 0.0101965i
\(302\) −17.9216 1.45755i −1.03127 0.0838723i
\(303\) 0 0
\(304\) 13.5551 + 27.3046i 0.777437 + 1.56602i
\(305\) −13.1947 −0.755525
\(306\) 0 0
\(307\) 7.03304 + 7.03304i 0.401397 + 0.401397i 0.878725 0.477328i \(-0.158395\pi\)
−0.477328 + 0.878725i \(0.658395\pi\)
\(308\) 3.48850 + 4.85462i 0.198776 + 0.276618i
\(309\) 0 0
\(310\) 4.30177 + 5.06344i 0.244324 + 0.287584i
\(311\) 14.2833i 0.809929i 0.914332 + 0.404964i \(0.132716\pi\)
−0.914332 + 0.404964i \(0.867284\pi\)
\(312\) 0 0
\(313\) 18.4579i 1.04330i 0.853158 + 0.521652i \(0.174684\pi\)
−0.853158 + 0.521652i \(0.825316\pi\)
\(314\) 10.9412 9.29534i 0.617445 0.524567i
\(315\) 0 0
\(316\) 9.90743 + 1.62226i 0.557336 + 0.0912590i
\(317\) 7.21807 + 7.21807i 0.405407 + 0.405407i 0.880133 0.474726i \(-0.157453\pi\)
−0.474726 + 0.880133i \(0.657453\pi\)
\(318\) 0 0
\(319\) −10.4255 −0.583714
\(320\) 7.64624 2.35265i 0.427438 0.131517i
\(321\) 0 0
\(322\) −0.127332 + 1.56564i −0.00709593 + 0.0872495i
\(323\) 28.4948 + 28.4948i 1.58549 + 1.58549i
\(324\) 0 0
\(325\) −2.33686 + 2.33686i −0.129626 + 0.129626i
\(326\) 10.7529 9.13536i 0.595545 0.505961i
\(327\) 0 0
\(328\) 15.0946 + 3.74917i 0.833461 + 0.207014i
\(329\) 3.18178i 0.175417i
\(330\) 0 0
\(331\) −15.4847 + 15.4847i −0.851116 + 0.851116i −0.990271 0.139155i \(-0.955561\pi\)
0.139155 + 0.990271i \(0.455561\pi\)
\(332\) 12.0568 + 16.7783i 0.661702 + 0.920828i
\(333\) 0 0
\(334\) −5.50554 0.447761i −0.301250 0.0245004i
\(335\) 2.75484 0.150513
\(336\) 0 0
\(337\) −26.0210 −1.41746 −0.708728 0.705482i \(-0.750731\pi\)
−0.708728 + 0.705482i \(0.750731\pi\)
\(338\) 2.92933 + 0.238240i 0.159335 + 0.0129586i
\(339\) 0 0
\(340\) 8.58803 6.17131i 0.465751 0.334686i
\(341\) −14.3788 + 14.3788i −0.778654 + 0.778654i
\(342\) 0 0
\(343\) 9.33873i 0.504244i
\(344\) 0.528527 + 0.877837i 0.0284963 + 0.0473298i
\(345\) 0 0
\(346\) 12.5005 10.6202i 0.672034 0.570943i
\(347\) 12.8554 12.8554i 0.690115 0.690115i −0.272142 0.962257i \(-0.587732\pi\)
0.962257 + 0.272142i \(0.0877321\pi\)
\(348\) 0 0
\(349\) −20.0227 20.0227i −1.07179 1.07179i −0.997216 0.0745736i \(-0.976240\pi\)
−0.0745736 0.997216i \(-0.523760\pi\)
\(350\) 0.0791665 0.973408i 0.00423163 0.0520308i
\(351\) 0 0
\(352\) 9.07376 + 22.7412i 0.483633 + 1.21211i
\(353\) −13.7062 −0.729510 −0.364755 0.931104i \(-0.618847\pi\)
−0.364755 + 0.931104i \(0.618847\pi\)
\(354\) 0 0
\(355\) −1.64223 1.64223i −0.0871603 0.0871603i
\(356\) −0.586778 + 3.58357i −0.0310992 + 0.189929i
\(357\) 0 0
\(358\) −4.73055 + 4.01896i −0.250017 + 0.212409i
\(359\) 32.3506i 1.70740i 0.520764 + 0.853700i \(0.325647\pi\)
−0.520764 + 0.853700i \(0.674353\pi\)
\(360\) 0 0
\(361\) 39.0799i 2.05684i
\(362\) −2.47383 2.91184i −0.130021 0.153043i
\(363\) 0 0
\(364\) 3.70668 2.66360i 0.194283 0.139611i
\(365\) 0.917352 + 0.917352i 0.0480164 + 0.0480164i
\(366\) 0 0
\(367\) 16.3714 0.854582 0.427291 0.904114i \(-0.359468\pi\)
0.427291 + 0.904114i \(0.359468\pi\)
\(368\) −2.05189 + 6.09765i −0.106962 + 0.317862i
\(369\) 0 0
\(370\) −15.7454 1.28056i −0.818567 0.0665734i
\(371\) −3.44817 3.44817i −0.179020 0.179020i
\(372\) 0 0
\(373\) 15.5321 15.5321i 0.804222 0.804222i −0.179530 0.983752i \(-0.557458\pi\)
0.983752 + 0.179530i \(0.0574578\pi\)
\(374\) 20.9562 + 24.6667i 1.08362 + 1.27548i
\(375\) 0 0
\(376\) 3.14136 12.6475i 0.162004 0.652245i
\(377\) 7.96022i 0.409972i
\(378\) 0 0
\(379\) 24.9538 24.9538i 1.28179 1.28179i 0.342145 0.939647i \(-0.388847\pi\)
0.939647 0.342145i \(-0.111153\pi\)
\(380\) 15.0417 + 2.46295i 0.771624 + 0.126347i
\(381\) 0 0
\(382\) 0.643168 7.90820i 0.0329073 0.404619i
\(383\) −6.24887 −0.319302 −0.159651 0.987174i \(-0.551037\pi\)
−0.159651 + 0.987174i \(0.551037\pi\)
\(384\) 0 0
\(385\) 2.98902 0.152335
\(386\) −0.447888 + 5.50710i −0.0227969 + 0.280304i
\(387\) 0 0
\(388\) −10.4022 1.70328i −0.528093 0.0864707i
\(389\) −2.10802 + 2.10802i −0.106881 + 0.106881i −0.758525 0.651644i \(-0.774080\pi\)
0.651644 + 0.758525i \(0.274080\pi\)
\(390\) 0 0
\(391\) 8.50478i 0.430105i
\(392\) 4.44748 17.9061i 0.224632 0.904393i
\(393\) 0 0
\(394\) −0.787876 0.927377i −0.0396926 0.0467206i
\(395\) 3.54945 3.54945i 0.178592 0.178592i
\(396\) 0 0
\(397\) 23.4977 + 23.4977i 1.17932 + 1.17932i 0.979919 + 0.199397i \(0.0638983\pi\)
0.199397 + 0.979919i \(0.436102\pi\)
\(398\) −21.8879 1.78013i −1.09714 0.0892296i
\(399\) 0 0
\(400\) 1.27573 3.79111i 0.0637864 0.189556i
\(401\) 20.9893 1.04816 0.524078 0.851670i \(-0.324410\pi\)
0.524078 + 0.851670i \(0.324410\pi\)
\(402\) 0 0
\(403\) 10.9787 + 10.9787i 0.546889 + 0.546889i
\(404\) −30.8936 + 22.2000i −1.53702 + 1.10449i
\(405\) 0 0
\(406\) −1.52306 1.79273i −0.0755883 0.0889718i
\(407\) 48.3492i 2.39658i
\(408\) 0 0
\(409\) 18.4025i 0.909944i −0.890506 0.454972i \(-0.849649\pi\)
0.890506 0.454972i \(-0.150351\pi\)
\(410\) 5.92656 5.03506i 0.292692 0.248664i
\(411\) 0 0
\(412\) −0.854193 + 5.21672i −0.0420831 + 0.257009i
\(413\) 1.01154 + 1.01154i 0.0497746 + 0.0497746i
\(414\) 0 0
\(415\) 10.3305 0.507104
\(416\) 17.3637 6.92815i 0.851326 0.339680i
\(417\) 0 0
\(418\) −3.78147 + 46.4958i −0.184958 + 2.27419i
\(419\) −14.9331 14.9331i −0.729530 0.729530i 0.240996 0.970526i \(-0.422526\pi\)
−0.970526 + 0.240996i \(0.922526\pi\)
\(420\) 0 0
\(421\) −16.2680 + 16.2680i −0.792854 + 0.792854i −0.981957 0.189103i \(-0.939442\pi\)
0.189103 + 0.981957i \(0.439442\pi\)
\(422\) −3.26942 + 2.77762i −0.159153 + 0.135212i
\(423\) 0 0
\(424\) −10.3020 17.1108i −0.500310 0.830972i
\(425\) 5.28770i 0.256491i
\(426\) 0 0
\(427\) 6.44310 6.44310i 0.311804 0.311804i
\(428\) −14.4273 + 10.3674i −0.697368 + 0.501125i
\(429\) 0 0
\(430\) 0.510647 + 0.0415305i 0.0246256 + 0.00200278i
\(431\) −7.05425 −0.339791 −0.169896 0.985462i \(-0.554343\pi\)
−0.169896 + 0.985462i \(0.554343\pi\)
\(432\) 0 0
\(433\) −14.3192 −0.688139 −0.344069 0.938944i \(-0.611806\pi\)
−0.344069 + 0.938944i \(0.611806\pi\)
\(434\) −4.57314 0.371930i −0.219518 0.0178532i
\(435\) 0 0
\(436\) 11.3758 + 15.8306i 0.544800 + 0.758146i
\(437\) −8.66750 + 8.66750i −0.414623 + 0.414623i
\(438\) 0 0
\(439\) 25.9047i 1.23637i 0.786034 + 0.618183i \(0.212131\pi\)
−0.786034 + 0.618183i \(0.787869\pi\)
\(440\) 11.8813 + 2.95105i 0.566418 + 0.140686i
\(441\) 0 0
\(442\) 18.8339 16.0008i 0.895838 0.761082i
\(443\) 11.1389 11.1389i 0.529224 0.529224i −0.391117 0.920341i \(-0.627911\pi\)
0.920341 + 0.391117i \(0.127911\pi\)
\(444\) 0 0
\(445\) 1.28385 + 1.28385i 0.0608605 + 0.0608605i
\(446\) 0.269164 3.30956i 0.0127453 0.156712i
\(447\) 0 0
\(448\) −2.58492 + 4.88257i −0.122126 + 0.230680i
\(449\) −12.6659 −0.597740 −0.298870 0.954294i \(-0.596610\pi\)
−0.298870 + 0.954294i \(0.596610\pi\)
\(450\) 0 0
\(451\) 16.8298 + 16.8298i 0.792484 + 0.792484i
\(452\) 12.7523 + 2.08809i 0.599820 + 0.0982153i
\(453\) 0 0
\(454\) 20.1013 17.0775i 0.943399 0.801489i
\(455\) 2.28223i 0.106992i
\(456\) 0 0
\(457\) 16.9442i 0.792617i −0.918117 0.396308i \(-0.870291\pi\)
0.918117 0.396308i \(-0.129709\pi\)
\(458\) 12.1446 + 14.2948i 0.567478 + 0.667954i
\(459\) 0 0
\(460\) 1.87718 + 2.61229i 0.0875240 + 0.121799i
\(461\) 13.1888 + 13.1888i 0.614264 + 0.614264i 0.944054 0.329790i \(-0.106978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(462\) 0 0
\(463\) −14.0955 −0.655074 −0.327537 0.944838i \(-0.606219\pi\)
−0.327537 + 0.944838i \(0.606219\pi\)
\(464\) −4.28417 8.62978i −0.198888 0.400627i
\(465\) 0 0
\(466\) 23.0372 + 1.87360i 1.06718 + 0.0867927i
\(467\) 12.0918 + 12.0918i 0.559540 + 0.559540i 0.929177 0.369636i \(-0.120518\pi\)
−0.369636 + 0.929177i \(0.620518\pi\)
\(468\) 0 0
\(469\) −1.34522 + 1.34522i −0.0621165 + 0.0621165i
\(470\) −4.21878 4.96576i −0.194598 0.229053i
\(471\) 0 0
\(472\) 3.02215 + 5.01953i 0.139106 + 0.231043i
\(473\) 1.56803i 0.0720981i
\(474\) 0 0
\(475\) 5.38887 5.38887i 0.247258 0.247258i
\(476\) −1.18011 + 7.20715i −0.0540902 + 0.330339i
\(477\) 0 0
\(478\) 2.22190 27.3199i 0.101627 1.24958i
\(479\) −14.2523 −0.651202 −0.325601 0.945507i \(-0.605567\pi\)
−0.325601 + 0.945507i \(0.605567\pi\)
\(480\) 0 0
\(481\) −36.9163 −1.68324
\(482\) −0.820770 + 10.0919i −0.0373850 + 0.459676i
\(483\) 0 0
\(484\) −2.49953 + 15.2651i −0.113615 + 0.693869i
\(485\) −3.72672 + 3.72672i −0.169222 + 0.169222i
\(486\) 0 0
\(487\) 26.0424i 1.18010i 0.807368 + 0.590048i \(0.200891\pi\)
−0.807368 + 0.590048i \(0.799109\pi\)
\(488\) 31.9724 19.2499i 1.44732 0.871402i
\(489\) 0 0
\(490\) −5.97286 7.03041i −0.269827 0.317602i
\(491\) −3.46798 + 3.46798i −0.156508 + 0.156508i −0.781017 0.624509i \(-0.785299\pi\)
0.624509 + 0.781017i \(0.285299\pi\)
\(492\) 0 0
\(493\) −9.00595 9.00595i −0.405608 0.405608i
\(494\) 35.5013 + 2.88729i 1.59728 + 0.129905i
\(495\) 0 0
\(496\) −17.8109 5.99346i −0.799733 0.269114i
\(497\) 1.60383 0.0719418
\(498\) 0 0
\(499\) −5.30274 5.30274i −0.237383 0.237383i 0.578383 0.815766i \(-0.303684\pi\)
−0.815766 + 0.578383i \(0.803684\pi\)
\(500\) −1.16711 1.62415i −0.0521946 0.0726342i
\(501\) 0 0
\(502\) −13.5153 15.9083i −0.603217 0.710021i
\(503\) 28.8492i 1.28632i −0.765731 0.643161i \(-0.777622\pi\)
0.765731 0.643161i \(-0.222378\pi\)
\(504\) 0 0
\(505\) 19.0214i 0.846442i
\(506\) −7.50308 + 6.37444i −0.333553 + 0.283378i
\(507\) 0 0
\(508\) 32.7881 + 5.36876i 1.45473 + 0.238200i
\(509\) −12.9968 12.9968i −0.576072 0.576072i 0.357747 0.933819i \(-0.383545\pi\)
−0.933819 + 0.357747i \(0.883545\pi\)
\(510\) 0 0
\(511\) −0.895906 −0.0396326
\(512\) −15.0955 + 16.8560i −0.667134 + 0.744937i
\(513\) 0 0
\(514\) 0.655906 8.06482i 0.0289308 0.355724i
\(515\) 1.86895 + 1.86895i 0.0823558 + 0.0823558i
\(516\) 0 0
\(517\) 14.1014 14.1014i 0.620178 0.620178i
\(518\) 8.31399 7.06336i 0.365296 0.310346i
\(519\) 0 0
\(520\) 2.25324 9.07179i 0.0988109 0.397824i
\(521\) 13.9833i 0.612618i −0.951932 0.306309i \(-0.900906\pi\)
0.951932 0.306309i \(-0.0990941\pi\)
\(522\) 0 0
\(523\) −6.30689 + 6.30689i −0.275781 + 0.275781i −0.831422 0.555641i \(-0.812473\pi\)
0.555641 + 0.831422i \(0.312473\pi\)
\(524\) −19.4299 27.0388i −0.848800 1.18119i
\(525\) 0 0
\(526\) −38.2524 3.11104i −1.66788 0.135648i
\(527\) −24.8420 −1.08213
\(528\) 0 0
\(529\) 20.4130 0.887523
\(530\) −9.95350 0.809510i −0.432352 0.0351629i
\(531\) 0 0
\(532\) −8.54773 + 6.14235i −0.370591 + 0.266305i
\(533\) 12.8502 12.8502i 0.556602 0.556602i
\(534\) 0 0
\(535\) 8.88296i 0.384044i
\(536\) −6.67535 + 4.01908i −0.288331 + 0.173598i
\(537\) 0 0
\(538\) 19.9320 16.9337i 0.859328 0.730064i
\(539\) 19.9644 19.9644i 0.859929 0.859929i
\(540\) 0 0
\(541\) 3.89317 + 3.89317i 0.167381 + 0.167381i 0.785827 0.618446i \(-0.212238\pi\)
−0.618446 + 0.785827i \(0.712238\pi\)
\(542\) −0.751184 + 9.23633i −0.0322661 + 0.396735i
\(543\) 0 0
\(544\) −11.8065 + 27.4831i −0.506199 + 1.17833i
\(545\) 9.74698 0.417515
\(546\) 0 0
\(547\) −27.8376 27.8376i −1.19025 1.19025i −0.976997 0.213251i \(-0.931595\pi\)
−0.213251 0.976997i \(-0.568405\pi\)
\(548\) 2.71953 16.6087i 0.116173 0.709489i
\(549\) 0 0
\(550\) 4.66492 3.96320i 0.198913 0.168991i
\(551\) 18.3565i 0.782014i
\(552\) 0 0
\(553\) 3.46647i 0.147409i
\(554\) −13.3184 15.6766i −0.565845 0.666033i
\(555\) 0 0
\(556\) 3.48772 2.50625i 0.147912 0.106289i
\(557\) −1.50454 1.50454i −0.0637492 0.0637492i 0.674513 0.738263i \(-0.264353\pi\)
−0.738263 + 0.674513i \(0.764353\pi\)
\(558\) 0 0
\(559\) 1.19725 0.0506382
\(560\) 1.22829 + 2.47419i 0.0519047 + 0.104554i
\(561\) 0 0
\(562\) −42.2465 3.43587i −1.78206 0.144933i
\(563\) 6.66663 + 6.66663i 0.280965 + 0.280965i 0.833494 0.552529i \(-0.186337\pi\)
−0.552529 + 0.833494i \(0.686337\pi\)
\(564\) 0 0
\(565\) 4.56867 4.56867i 0.192206 0.192206i
\(566\) −24.7557 29.1389i −1.04056 1.22480i
\(567\) 0 0
\(568\) 6.37520 + 1.58346i 0.267497 + 0.0664405i
\(569\) 8.38187i 0.351386i 0.984445 + 0.175693i \(0.0562167\pi\)
−0.984445 + 0.175693i \(0.943783\pi\)
\(570\) 0 0
\(571\) 28.4129 28.4129i 1.18904 1.18904i 0.211708 0.977333i \(-0.432097\pi\)
0.977333 0.211708i \(-0.0679027\pi\)
\(572\) 28.2325 + 4.62283i 1.18046 + 0.193290i
\(573\) 0 0
\(574\) −0.435329 + 5.35268i −0.0181703 + 0.223416i
\(575\) 1.60841 0.0670752
\(576\) 0 0
\(577\) 23.2045 0.966014 0.483007 0.875616i \(-0.339545\pi\)
0.483007 + 0.875616i \(0.339545\pi\)
\(578\) −1.25642 + 15.4485i −0.0522600 + 0.642574i
\(579\) 0 0
\(580\) −4.75403 0.778432i −0.197400 0.0323226i
\(581\) −5.04450 + 5.04450i −0.209281 + 0.209281i
\(582\) 0 0
\(583\) 30.5640i 1.26583i
\(584\) −3.56120 0.884526i −0.147364 0.0366019i
\(585\) 0 0
\(586\) −9.42640 11.0954i −0.389401 0.458348i
\(587\) 11.0197 11.0197i 0.454832 0.454832i −0.442123 0.896955i \(-0.645774\pi\)
0.896955 + 0.442123i \(0.145774\pi\)
\(588\) 0 0
\(589\) −25.3173 25.3173i −1.04318 1.04318i
\(590\) 2.91991 + 0.237474i 0.120211 + 0.00977666i
\(591\) 0 0
\(592\) 40.0215 19.8683i 1.64487 0.816582i
\(593\) 6.98847 0.286982 0.143491 0.989652i \(-0.454167\pi\)
0.143491 + 0.989652i \(0.454167\pi\)
\(594\) 0 0
\(595\) 2.58204 + 2.58204i 0.105853 + 0.105853i
\(596\) −6.00500 + 4.31516i −0.245975 + 0.176756i
\(597\) 0 0
\(598\) 4.86711 + 5.72888i 0.199031 + 0.234271i
\(599\) 39.9642i 1.63289i 0.577420 + 0.816447i \(0.304059\pi\)
−0.577420 + 0.816447i \(0.695941\pi\)
\(600\) 0 0
\(601\) 21.0830i 0.859993i −0.902831 0.429997i \(-0.858515\pi\)
0.902831 0.429997i \(-0.141485\pi\)
\(602\) −0.269634 + 0.229075i −0.0109895 + 0.00933638i
\(603\) 0 0
\(604\) 4.10899 25.0944i 0.167193 1.02108i
\(605\) 5.46890 + 5.46890i 0.222343 + 0.222343i
\(606\) 0 0
\(607\) 22.3189 0.905897 0.452949 0.891537i \(-0.350372\pi\)
0.452949 + 0.891537i \(0.350372\pi\)
\(608\) −40.0413 + 15.9765i −1.62389 + 0.647934i
\(609\) 0 0
\(610\) 1.51261 18.5987i 0.0612440 0.753038i
\(611\) −10.7669 10.7669i −0.435583 0.435583i
\(612\) 0 0
\(613\) −10.6045 + 10.6045i −0.428312 + 0.428312i −0.888053 0.459741i \(-0.847942\pi\)
0.459741 + 0.888053i \(0.347942\pi\)
\(614\) −10.7197 + 9.10724i −0.432614 + 0.367538i
\(615\) 0 0
\(616\) −7.24279 + 4.36073i −0.291820 + 0.175699i
\(617\) 33.7636i 1.35927i 0.733550 + 0.679635i \(0.237862\pi\)
−0.733550 + 0.679635i \(0.762138\pi\)
\(618\) 0 0
\(619\) 4.86777 4.86777i 0.195652 0.195652i −0.602481 0.798133i \(-0.705821\pi\)
0.798133 + 0.602481i \(0.205821\pi\)
\(620\) −7.63037 + 5.48314i −0.306443 + 0.220208i
\(621\) 0 0
\(622\) −20.1331 1.63741i −0.807263 0.0656541i
\(623\) −1.25384 −0.0502341
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) −26.0176 2.11599i −1.03987 0.0845718i
\(627\) 0 0
\(628\) 11.8481 + 16.4878i 0.472789 + 0.657936i
\(629\) 41.7661 41.7661i 1.66532 1.66532i
\(630\) 0 0
\(631\) 16.1348i 0.642315i −0.947026 0.321157i \(-0.895928\pi\)
0.947026 0.321157i \(-0.104072\pi\)
\(632\) −3.42244 + 13.7791i −0.136137 + 0.548105i
\(633\) 0 0
\(634\) −11.0018 + 9.34683i −0.436936 + 0.371210i
\(635\) 11.7467 11.7467i 0.466154 0.466154i
\(636\) 0 0
\(637\) −15.2436 15.2436i −0.603972 0.603972i
\(638\) 1.19516 14.6953i 0.0473167 0.581793i
\(639\) 0 0
\(640\) 2.43965 + 11.0475i 0.0964358 + 0.436692i
\(641\) −20.3125 −0.802296 −0.401148 0.916013i \(-0.631389\pi\)
−0.401148 + 0.916013i \(0.631389\pi\)
\(642\) 0 0
\(643\) 7.78443 + 7.78443i 0.306988 + 0.306988i 0.843740 0.536752i \(-0.180349\pi\)
−0.536752 + 0.843740i \(0.680349\pi\)
\(644\) −2.19226 0.358964i −0.0863871 0.0141452i
\(645\) 0 0
\(646\) −43.4317 + 36.8985i −1.70880 + 1.45175i
\(647\) 21.7693i 0.855840i −0.903817 0.427920i \(-0.859246\pi\)
0.903817 0.427920i \(-0.140754\pi\)
\(648\) 0 0
\(649\) 8.96611i 0.351951i
\(650\) −3.02605 3.56183i −0.118691 0.139707i
\(651\) 0 0
\(652\) 11.6441 + 16.2040i 0.456020 + 0.634600i
\(653\) 26.3118 + 26.3118i 1.02966 + 1.02966i 0.999546 + 0.0301152i \(0.00958743\pi\)
0.0301152 + 0.999546i \(0.490413\pi\)
\(654\) 0 0
\(655\) −16.6479 −0.650489
\(656\) −7.01511 + 20.8470i −0.273894 + 0.813937i
\(657\) 0 0
\(658\) 4.48491 + 0.364754i 0.174840 + 0.0142196i
\(659\) 20.2389 + 20.2389i 0.788397 + 0.788397i 0.981231 0.192835i \(-0.0617681\pi\)
−0.192835 + 0.981231i \(0.561768\pi\)
\(660\) 0 0
\(661\) 6.81905 6.81905i 0.265230 0.265230i −0.561945 0.827175i \(-0.689947\pi\)
0.827175 + 0.561945i \(0.189947\pi\)
\(662\) −20.0515 23.6017i −0.779322 0.917308i
\(663\) 0 0
\(664\) −25.0322 + 15.0713i −0.971436 + 0.584881i
\(665\) 5.26289i 0.204086i
\(666\) 0 0
\(667\) 2.73942 2.73942i 0.106071 0.106071i
\(668\) 1.26229 7.70905i 0.0488395 0.298272i
\(669\) 0 0
\(670\) −0.315811 + 3.88311i −0.0122008 + 0.150018i
\(671\) 57.1105 2.20473
\(672\) 0 0
\(673\) −8.19512 −0.315899 −0.157949 0.987447i \(-0.550488\pi\)
−0.157949 + 0.987447i \(0.550488\pi\)
\(674\) 2.98301 36.6782i 0.114901 1.41279i
\(675\) 0 0
\(676\) −0.671628 + 4.10176i −0.0258318 + 0.157760i
\(677\) −12.8834 + 12.8834i −0.495151 + 0.495151i −0.909925 0.414774i \(-0.863861\pi\)
0.414774 + 0.909925i \(0.363861\pi\)
\(678\) 0 0
\(679\) 3.63960i 0.139675i
\(680\) 7.71431 + 12.8128i 0.295830 + 0.491349i
\(681\) 0 0
\(682\) −18.6194 21.9161i −0.712973 0.839211i
\(683\) −15.0673 + 15.0673i −0.576535 + 0.576535i −0.933947 0.357412i \(-0.883659\pi\)
0.357412 + 0.933947i \(0.383659\pi\)
\(684\) 0 0
\(685\) −5.95027 5.95027i −0.227348 0.227348i
\(686\) 13.1635 + 1.07058i 0.502585 + 0.0408748i
\(687\) 0 0
\(688\) −1.29795 + 0.644356i −0.0494840 + 0.0245659i
\(689\) −23.3367 −0.889058
\(690\) 0 0
\(691\) −5.23733 5.23733i −0.199237 0.199237i 0.600436 0.799673i \(-0.294994\pi\)
−0.799673 + 0.600436i \(0.794994\pi\)
\(692\) 13.5367 + 18.8377i 0.514588 + 0.716104i
\(693\) 0 0
\(694\) 16.6467 + 19.5942i 0.631902 + 0.743786i
\(695\) 2.14741i 0.0814559i
\(696\) 0 0
\(697\) 29.0766i 1.10135i
\(698\) 30.5185 25.9278i 1.15514 0.981381i
\(699\) 0 0
\(700\) 1.36300 + 0.223180i 0.0515166 + 0.00843540i
\(701\) −21.7664 21.7664i −0.822106 0.822106i 0.164303 0.986410i \(-0.447462\pi\)
−0.986410 + 0.164303i \(0.947462\pi\)
\(702\) 0 0
\(703\) 85.1304 3.21075
\(704\) −33.0952 + 10.1830i −1.24732 + 0.383786i
\(705\) 0 0
\(706\) 1.57126 19.3198i 0.0591352 0.727109i
\(707\) −9.28836 9.28836i −0.349325 0.349325i
\(708\) 0 0
\(709\) −23.9643 + 23.9643i −0.899997 + 0.899997i −0.995435 0.0954387i \(-0.969575\pi\)
0.0954387 + 0.995435i \(0.469575\pi\)
\(710\) 2.50308 2.12655i 0.0939388 0.0798081i
\(711\) 0 0
\(712\) −4.98398 1.23791i −0.186783 0.0463928i
\(713\) 7.55640i 0.282990i
\(714\) 0 0
\(715\) 10.1146 10.1146i 0.378266 0.378266i
\(716\) −5.12266 7.12872i −0.191443 0.266413i
\(717\) 0 0
\(718\) −45.6001 3.70862i −1.70178 0.138405i
\(719\) 44.4408 1.65736 0.828681 0.559721i \(-0.189092\pi\)
0.828681 + 0.559721i \(0.189092\pi\)
\(720\) 0 0
\(721\) −1.82526 −0.0679762
\(722\) −55.0855 4.48006i −2.05007 0.166730i
\(723\) 0 0
\(724\) 4.38800 3.15320i 0.163079 0.117188i
\(725\) −1.70319 + 1.70319i −0.0632548 + 0.0632548i
\(726\) 0 0
\(727\) 46.6543i 1.73031i −0.501504 0.865155i \(-0.667220\pi\)
0.501504 0.865155i \(-0.332780\pi\)
\(728\) 3.32958 + 5.53014i 0.123402 + 0.204960i
\(729\) 0 0
\(730\) −1.39823 + 1.18790i −0.0517507 + 0.0439661i
\(731\) −1.35453 + 1.35453i −0.0500992 + 0.0500992i
\(732\) 0 0
\(733\) 19.4202 + 19.4202i 0.717303 + 0.717303i 0.968052 0.250749i \(-0.0806770\pi\)
−0.250749 + 0.968052i \(0.580677\pi\)
\(734\) −1.87679 + 23.0765i −0.0692737 + 0.851769i
\(735\) 0 0
\(736\) −8.35977 3.59128i −0.308145 0.132376i
\(737\) −11.9238 −0.439219
\(738\) 0 0
\(739\) −20.5243 20.5243i −0.754999 0.754999i 0.220409 0.975408i \(-0.429261\pi\)
−0.975408 + 0.220409i \(0.929261\pi\)
\(740\) 3.61006 22.0473i 0.132709 0.810476i
\(741\) 0 0
\(742\) 5.25570 4.46511i 0.192943 0.163919i
\(743\) 12.9245i 0.474154i −0.971491 0.237077i \(-0.923811\pi\)
0.971491 0.237077i \(-0.0761893\pi\)
\(744\) 0 0
\(745\) 3.69732i 0.135459i
\(746\) 20.1129 + 23.6740i 0.736384 + 0.866767i
\(747\) 0 0
\(748\) −37.1716 + 26.7113i −1.35913 + 0.976662i
\(749\) −4.33765 4.33765i −0.158494 0.158494i
\(750\) 0 0
\(751\) −52.2694 −1.90734 −0.953668 0.300861i \(-0.902726\pi\)
−0.953668 + 0.300861i \(0.902726\pi\)
\(752\) 17.4673 + 5.87783i 0.636966 + 0.214342i
\(753\) 0 0
\(754\) −11.2204 0.912546i −0.408623 0.0332330i
\(755\) −8.99036 8.99036i −0.327193 0.327193i
\(756\) 0 0
\(757\) −34.4514 + 34.4514i −1.25216 + 1.25216i −0.297407 + 0.954751i \(0.596122\pi\)
−0.954751 + 0.297407i \(0.903878\pi\)
\(758\) 32.3132 + 38.0346i 1.17367 + 1.38148i
\(759\) 0 0
\(760\) −5.19604 + 20.9199i −0.188480 + 0.758843i
\(761\) 47.7467i 1.73082i −0.501067 0.865408i \(-0.667059\pi\)
0.501067 0.865408i \(-0.332941\pi\)
\(762\) 0 0
\(763\) −4.75956 + 4.75956i −0.172308 + 0.172308i
\(764\) 11.0733 + 1.81317i 0.400620 + 0.0655980i
\(765\) 0 0
\(766\) 0.716360 8.80815i 0.0258831 0.318251i
\(767\) 6.84595 0.247193
\(768\) 0 0
\(769\) −17.9108 −0.645882 −0.322941 0.946419i \(-0.604671\pi\)
−0.322941 + 0.946419i \(0.604671\pi\)
\(770\) −0.342656 + 4.21320i −0.0123485 + 0.151833i
\(771\) 0 0
\(772\) −7.71124 1.26265i −0.277534 0.0454437i
\(773\) −3.73170 + 3.73170i −0.134220 + 0.134220i −0.771025 0.636805i \(-0.780256\pi\)
0.636805 + 0.771025i \(0.280256\pi\)
\(774\) 0 0
\(775\) 4.69807i 0.168760i
\(776\) 3.59336 14.4673i 0.128994 0.519346i
\(777\) 0 0
\(778\) −2.72972 3.21304i −0.0978652 0.115193i
\(779\) −29.6329 + 29.6329i −1.06171 + 1.06171i
\(780\) 0 0
\(781\) 7.10805 + 7.10805i 0.254346 + 0.254346i
\(782\) −11.9880 0.974974i −0.428690 0.0348650i
\(783\) 0 0
\(784\) 24.7298 + 8.32170i 0.883208 + 0.297204i
\(785\) 10.1517 0.362328
\(786\) 0 0
\(787\) 2.40160 + 2.40160i 0.0856076 + 0.0856076i 0.748614 0.663006i \(-0.230720\pi\)
−0.663006 + 0.748614i \(0.730720\pi\)
\(788\) 1.39751 1.00425i 0.0497843 0.0357748i
\(789\) 0 0
\(790\) 4.59626 + 5.41007i 0.163528 + 0.192481i
\(791\) 4.46187i 0.158646i
\(792\) 0 0
\(793\) 43.6060i 1.54849i
\(794\) −35.8151 + 30.4277i −1.27103 + 1.07984i
\(795\) 0 0
\(796\) 5.01839 30.6482i 0.177872 1.08630i
\(797\) −35.4972 35.4972i −1.25738 1.25738i −0.952341 0.305035i \(-0.901332\pi\)
−0.305035 0.952341i \(-0.598668\pi\)
\(798\) 0 0
\(799\) 24.3627 0.861892
\(800\) 5.19755 + 2.23282i 0.183761 + 0.0789421i
\(801\) 0 0
\(802\) −2.40618 + 29.5857i −0.0849652 + 1.04471i
\(803\) −3.97058 3.97058i −0.140119 0.140119i
\(804\) 0 0
\(805\) −0.785403 + 0.785403i −0.0276818 + 0.0276818i
\(806\) −16.7337 + 14.2166i −0.589421 + 0.500757i
\(807\) 0 0
\(808\) −27.7506 46.0914i −0.976264 1.62149i
\(809\) 11.9182i 0.419021i −0.977806 0.209510i \(-0.932813\pi\)
0.977806 0.209510i \(-0.0671870\pi\)
\(810\) 0 0
\(811\) −22.1494 + 22.1494i −0.777772 + 0.777772i −0.979452 0.201680i \(-0.935360\pi\)
0.201680 + 0.979452i \(0.435360\pi\)
\(812\) 2.70156 1.94133i 0.0948063 0.0681273i
\(813\) 0 0
\(814\) 68.1510 + 5.54267i 2.38869 + 0.194270i
\(815\) 9.97694 0.349477
\(816\) 0 0
\(817\) −2.76090 −0.0965915
\(818\) 25.9394 + 2.10963i 0.906949 + 0.0737615i
\(819\) 0 0
\(820\) 6.41780 + 8.93105i 0.224119 + 0.311886i
\(821\) −13.3909 + 13.3909i −0.467344 + 0.467344i −0.901053 0.433709i \(-0.857205\pi\)
0.433709 + 0.901053i \(0.357205\pi\)
\(822\) 0 0
\(823\) 43.9496i 1.53199i −0.642848 0.765994i \(-0.722247\pi\)
0.642848 0.765994i \(-0.277753\pi\)
\(824\) −7.25536 1.80207i −0.252752 0.0627782i
\(825\) 0 0
\(826\) −1.54179 + 1.30986i −0.0536456 + 0.0455760i
\(827\) −1.79096 + 1.79096i −0.0622777 + 0.0622777i −0.737560 0.675282i \(-0.764022\pi\)
0.675282 + 0.737560i \(0.264022\pi\)
\(828\) 0 0
\(829\) 13.4979 + 13.4979i 0.468801 + 0.468801i 0.901526 0.432725i \(-0.142448\pi\)
−0.432725 + 0.901526i \(0.642448\pi\)
\(830\) −1.18427 + 14.5615i −0.0411067 + 0.505436i
\(831\) 0 0
\(832\) 7.77509 + 25.2694i 0.269553 + 0.876060i
\(833\) 34.4923 1.19509
\(834\) 0 0
\(835\) −2.76186 2.76186i −0.0955780 0.0955780i
\(836\) −65.1051 10.6604i −2.25171 0.368698i
\(837\) 0 0
\(838\) 22.7610 19.3372i 0.786266 0.667993i
\(839\) 14.5332i 0.501741i −0.968021 0.250870i \(-0.919283\pi\)
0.968021 0.250870i \(-0.0807168\pi\)
\(840\) 0 0
\(841\) 23.1983i 0.799941i
\(842\) −21.0658 24.7956i −0.725975 0.854515i
\(843\) 0 0
\(844\) −3.54042 4.92686i −0.121866 0.169590i
\(845\) 1.46950 + 1.46950i 0.0505524 + 0.0505524i
\(846\) 0 0
\(847\) −5.34105 −0.183521
\(848\) 25.2996 12.5598i 0.868793 0.431304i
\(849\) 0 0
\(850\) 7.45333 + 0.606174i 0.255647 + 0.0207916i
\(851\) 12.7043 + 12.7043i 0.435499 + 0.435499i
\(852\) 0 0
\(853\) 11.5836 11.5836i 0.396615 0.396615i −0.480423 0.877037i \(-0.659517\pi\)
0.877037 + 0.480423i \(0.159517\pi\)
\(854\) 8.34331 + 9.82056i 0.285502 + 0.336053i
\(855\) 0 0
\(856\) −12.9595 21.5246i −0.442946 0.735695i
\(857\) 15.6443i 0.534399i 0.963641 + 0.267200i \(0.0860983\pi\)
−0.963641 + 0.267200i \(0.913902\pi\)
\(858\) 0 0
\(859\) 12.0947 12.0947i 0.412665 0.412665i −0.470001 0.882666i \(-0.655746\pi\)
0.882666 + 0.470001i \(0.155746\pi\)
\(860\) −0.117079 + 0.715026i −0.00399237 + 0.0243822i
\(861\) 0 0
\(862\) 0.808687 9.94338i 0.0275440 0.338673i
\(863\) 9.28120 0.315936 0.157968 0.987444i \(-0.449506\pi\)
0.157968 + 0.987444i \(0.449506\pi\)
\(864\) 0 0
\(865\) 11.5985 0.394362
\(866\) 1.64153 20.1838i 0.0557816 0.685874i
\(867\) 0 0
\(868\) 1.04851 6.40347i 0.0355889 0.217348i
\(869\) −15.3631 + 15.3631i −0.521157 + 0.521157i
\(870\) 0 0
\(871\) 9.10425i 0.308486i
\(872\) −23.6182 + 14.2200i −0.799814 + 0.481551i
\(873\) 0 0
\(874\) −11.2237 13.2110i −0.379648 0.446868i
\(875\) 0.488311 0.488311i 0.0165079 0.0165079i
\(876\) 0 0
\(877\) −2.97610 2.97610i −0.100496 0.100496i 0.655071 0.755567i \(-0.272639\pi\)
−0.755567 + 0.655071i \(0.772639\pi\)
\(878\) −36.5143 2.96968i −1.23230 0.100222i
\(879\) 0 0
\(880\) −5.52173 + 16.4091i −0.186138 + 0.553150i
\(881\) −29.3318 −0.988214 −0.494107 0.869401i \(-0.664505\pi\)
−0.494107 + 0.869401i \(0.664505\pi\)
\(882\) 0 0
\(883\) 35.5597 + 35.5597i 1.19668 + 1.19668i 0.975155 + 0.221525i \(0.0711033\pi\)
0.221525 + 0.975155i \(0.428897\pi\)
\(884\) 20.3950 + 28.3818i 0.685960 + 0.954585i
\(885\) 0 0
\(886\) 14.4240 + 16.9778i 0.484583 + 0.570382i
\(887\) 4.51671i 0.151656i 0.997121 + 0.0758282i \(0.0241601\pi\)
−0.997121 + 0.0758282i \(0.975840\pi\)
\(888\) 0 0
\(889\) 11.4721i 0.384762i
\(890\) −1.95685 + 1.66249i −0.0655937 + 0.0557268i
\(891\) 0 0
\(892\) 4.63416 + 0.758805i 0.155163 + 0.0254067i
\(893\) 24.8289 + 24.8289i 0.830867 + 0.830867i
\(894\) 0 0
\(895\) −4.38920 −0.146715
\(896\) −6.58594 4.20332i −0.220021 0.140423i
\(897\) 0 0
\(898\) 1.45200 17.8533i 0.0484537 0.595773i
\(899\) 8.00169 + 8.00169i 0.266871 + 0.266871i
\(900\) 0 0
\(901\) 26.4025 26.4025i 0.879594 0.879594i
\(902\) −25.6519 + 21.7933i −0.854116 + 0.725636i
\(903\) 0 0
\(904\) −4.40519 + 17.7358i −0.146514 + 0.589884i
\(905\) 2.70172i 0.0898083i
\(906\) 0 0
\(907\) −5.06769 + 5.06769i −0.168270 + 0.168270i −0.786218 0.617949i \(-0.787964\pi\)
0.617949 + 0.786218i \(0.287964\pi\)
\(908\) 21.7674 + 30.2917i 0.722378 + 1.00526i
\(909\) 0 0
\(910\) 3.21693 + 0.261631i 0.106640 + 0.00867297i
\(911\) −36.7140 −1.21639 −0.608194 0.793788i \(-0.708106\pi\)
−0.608194 + 0.793788i \(0.708106\pi\)
\(912\) 0 0
\(913\) −44.7135 −1.47980
\(914\) 23.8839 + 1.94246i 0.790008 + 0.0642507i
\(915\) 0 0
\(916\) −21.5417 + 15.4797i −0.711757 + 0.511465i
\(917\) 8.12937 8.12937i 0.268456 0.268456i
\(918\) 0 0
\(919\) 21.5651i 0.711365i 0.934607 + 0.355683i \(0.115752\pi\)
−0.934607 + 0.355683i \(0.884248\pi\)
\(920\) −3.89738 + 2.34653i −0.128493 + 0.0773628i
\(921\) 0 0
\(922\) −20.1023 + 17.0785i −0.662035 + 0.562449i
\(923\) 5.42725 5.42725i 0.178640 0.178640i
\(924\) 0 0
\(925\) −7.89871 7.89871i −0.259708 0.259708i
\(926\) 1.61589 19.8685i 0.0531013 0.652918i
\(927\) 0 0
\(928\) 12.6553 5.04949i 0.415431 0.165758i
\(929\) 45.6603 1.49807 0.749033 0.662532i \(-0.230518\pi\)
0.749033 + 0.662532i \(0.230518\pi\)
\(930\) 0 0
\(931\) 35.1522 + 35.1522i 1.15207 + 1.15207i
\(932\) −5.28189 + 32.2575i −0.173014 + 1.05663i
\(933\) 0 0
\(934\) −18.4303 + 15.6579i −0.603056 + 0.512342i
\(935\) 22.8868i 0.748478i
\(936\) 0 0
\(937\) 2.29807i 0.0750746i −0.999295 0.0375373i \(-0.988049\pi\)
0.999295 0.0375373i \(-0.0119513\pi\)
\(938\) −1.74195 2.05038i −0.0568768 0.0669473i
\(939\) 0 0
\(940\) 7.48316 5.37736i 0.244074 0.175390i
\(941\) 24.1999 + 24.1999i 0.788894 + 0.788894i 0.981313 0.192419i \(-0.0616333\pi\)
−0.192419 + 0.981313i \(0.561633\pi\)
\(942\) 0 0
\(943\) −8.84448 −0.288016
\(944\) −7.42179 + 3.68447i −0.241559 + 0.119919i
\(945\) 0 0
\(946\) −2.21023 0.179756i −0.0718609 0.00584439i
\(947\) −24.5182 24.5182i −0.796733 0.796733i 0.185846 0.982579i \(-0.440498\pi\)
−0.982579 + 0.185846i \(0.940498\pi\)
\(948\) 0 0
\(949\) −3.03168 + 3.03168i −0.0984125 + 0.0984125i
\(950\) 6.97817 + 8.21371i 0.226402 + 0.266488i
\(951\) 0 0
\(952\) −10.0236 2.48965i −0.324867 0.0806900i
\(953\) 32.3462i 1.04780i −0.851781 0.523898i \(-0.824477\pi\)
0.851781 0.523898i \(-0.175523\pi\)
\(954\) 0 0
\(955\) 3.96716 3.96716i 0.128374 0.128374i
\(956\) 38.2543 + 6.26381i 1.23723 + 0.202586i
\(957\) 0 0
\(958\) 1.63385 20.0894i 0.0527874 0.649059i
\(959\) 5.81116 0.187652
\(960\) 0 0
\(961\) −8.92816 −0.288005
\(962\) 4.23203 52.0358i 0.136446 1.67770i
\(963\) 0 0
\(964\) −14.1311 2.31385i −0.455132 0.0745240i
\(965\) −2.76264 + 2.76264i −0.0889326 + 0.0889326i
\(966\) 0 0
\(967\) 14.6983i 0.472665i −0.971672 0.236333i \(-0.924054\pi\)
0.971672 0.236333i \(-0.0759455\pi\)
\(968\) −21.2305 5.27321i −0.682376 0.169487i
\(969\) 0 0
\(970\) −4.82581 5.68026i −0.154947 0.182382i
\(971\) −29.1065 + 29.1065i −0.934073 + 0.934073i −0.997957 0.0638845i \(-0.979651\pi\)
0.0638845 + 0.997957i \(0.479651\pi\)
\(972\) 0 0
\(973\) 1.04860 + 1.04860i 0.0336167 + 0.0336167i
\(974\) −36.7084 2.98546i −1.17621 0.0956604i
\(975\) 0 0
\(976\) 23.4686 + 47.2738i 0.751212 + 1.51320i
\(977\) −17.3533 −0.555180 −0.277590 0.960700i \(-0.589536\pi\)
−0.277590 + 0.960700i \(0.589536\pi\)
\(978\) 0 0
\(979\) −5.55691 5.55691i −0.177600 0.177600i
\(980\) 10.5945 7.61315i 0.338429 0.243193i
\(981\) 0 0
\(982\) −4.49076 5.28589i −0.143306 0.168680i
\(983\) 27.5174i 0.877668i −0.898568 0.438834i \(-0.855392\pi\)
0.898568 0.438834i \(-0.144608\pi\)
\(984\) 0 0
\(985\) 0.860458i 0.0274165i
\(986\) 13.7269 11.6620i 0.437152 0.371394i
\(987\) 0 0
\(988\) −8.13961 + 49.7101i −0.258955 + 1.58149i
\(989\) −0.412020 0.412020i −0.0131015 0.0131015i
\(990\) 0 0
\(991\) 6.96363 0.221207 0.110604 0.993865i \(-0.464722\pi\)
0.110604 + 0.993865i \(0.464722\pi\)
\(992\) 10.4899 24.4184i 0.333056 0.775286i
\(993\) 0 0
\(994\) −0.183861 + 2.26070i −0.00583171 + 0.0717050i
\(995\) −10.9801 10.9801i −0.348092 0.348092i
\(996\) 0 0
\(997\) −15.7051 + 15.7051i −0.497385 + 0.497385i −0.910623 0.413238i \(-0.864398\pi\)
0.413238 + 0.910623i \(0.364398\pi\)
\(998\) 8.08242 6.86663i 0.255845 0.217359i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.t.c.541.4 16
3.2 odd 2 80.2.l.a.61.5 yes 16
4.3 odd 2 2880.2.t.c.721.3 16
12.11 even 2 320.2.l.a.81.2 16
15.2 even 4 400.2.q.h.349.8 16
15.8 even 4 400.2.q.g.349.1 16
15.14 odd 2 400.2.l.h.301.4 16
16.5 even 4 inner 720.2.t.c.181.4 16
16.11 odd 4 2880.2.t.c.2161.2 16
24.5 odd 2 640.2.l.b.161.2 16
24.11 even 2 640.2.l.a.161.7 16
48.5 odd 4 80.2.l.a.21.5 16
48.11 even 4 320.2.l.a.241.2 16
48.29 odd 4 640.2.l.b.481.2 16
48.35 even 4 640.2.l.a.481.7 16
60.23 odd 4 1600.2.q.h.849.7 16
60.47 odd 4 1600.2.q.g.849.2 16
60.59 even 2 1600.2.l.i.401.7 16
96.5 odd 8 5120.2.a.v.1.2 8
96.11 even 8 5120.2.a.u.1.2 8
96.53 odd 8 5120.2.a.s.1.7 8
96.59 even 8 5120.2.a.t.1.7 8
240.53 even 4 400.2.q.h.149.8 16
240.59 even 4 1600.2.l.i.1201.7 16
240.107 odd 4 1600.2.q.h.49.7 16
240.149 odd 4 400.2.l.h.101.4 16
240.197 even 4 400.2.q.g.149.1 16
240.203 odd 4 1600.2.q.g.49.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.5 16 48.5 odd 4
80.2.l.a.61.5 yes 16 3.2 odd 2
320.2.l.a.81.2 16 12.11 even 2
320.2.l.a.241.2 16 48.11 even 4
400.2.l.h.101.4 16 240.149 odd 4
400.2.l.h.301.4 16 15.14 odd 2
400.2.q.g.149.1 16 240.197 even 4
400.2.q.g.349.1 16 15.8 even 4
400.2.q.h.149.8 16 240.53 even 4
400.2.q.h.349.8 16 15.2 even 4
640.2.l.a.161.7 16 24.11 even 2
640.2.l.a.481.7 16 48.35 even 4
640.2.l.b.161.2 16 24.5 odd 2
640.2.l.b.481.2 16 48.29 odd 4
720.2.t.c.181.4 16 16.5 even 4 inner
720.2.t.c.541.4 16 1.1 even 1 trivial
1600.2.l.i.401.7 16 60.59 even 2
1600.2.l.i.1201.7 16 240.59 even 4
1600.2.q.g.49.2 16 240.203 odd 4
1600.2.q.g.849.2 16 60.47 odd 4
1600.2.q.h.49.7 16 240.107 odd 4
1600.2.q.h.849.7 16 60.23 odd 4
2880.2.t.c.721.3 16 4.3 odd 2
2880.2.t.c.2161.2 16 16.11 odd 4
5120.2.a.s.1.7 8 96.53 odd 8
5120.2.a.t.1.7 8 96.59 even 8
5120.2.a.u.1.2 8 96.11 even 8
5120.2.a.v.1.2 8 96.5 odd 8