Properties

Label 720.2.q.i
Level $720$
Weight $2$
Character orbit 720.q
Analytic conductor $5.749$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + \beta_{3} q^{5} + ( - \beta_{5} - \beta_{4} + 2 \beta_{3} + \beta_{2} - \beta_1 + 2) q^{7} + ( - 2 \beta_{5} + \beta_{3} + \beta_{2} - \beta_1 - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{4} q^{3} + \beta_{3} q^{5} + ( - \beta_{5} - \beta_{4} + 2 \beta_{3} + \beta_{2} - \beta_1 + 2) q^{7} + ( - 2 \beta_{5} + \beta_{3} + \beta_{2} - \beta_1 - 1) q^{9} + (\beta_{2} - \beta_1) q^{11} + ( - \beta_{5} + \beta_{4} + 2 \beta_{3} + \beta_{2}) q^{13} - \beta_1 q^{15} + (\beta_{5} - \beta_{4} - \beta_1) q^{17} + ( - \beta_{5} + \beta_{4} + \beta_1 - 2) q^{19} + ( - \beta_{5} - \beta_{4} + 2 \beta_{3} - \beta_{2} - 2 \beta_1 + 1) q^{21} + ( - \beta_{5} + 2 \beta_{4} + 2 \beta_{2} + \beta_1) q^{23} + ( - \beta_{3} - 1) q^{25} + (\beta_{5} + 2 \beta_{4} + 4 \beta_{3} - 2 \beta_{2} + 2) q^{27} + (2 \beta_{5} + 2 \beta_{4} + 3 \beta_{3} + 3) q^{29} + ( - 3 \beta_{5} - \beta_{4} - 2 \beta_{3} - \beta_{2} - 4 \beta_1) q^{31} + (\beta_{5} + \beta_{4} - 2 \beta_{3} - 2 \beta_{2} + \beta_1 + 2) q^{33} + (\beta_{4} - \beta_{2} - 2) q^{35} + ( - \beta_{5} - \beta_{4} + 2 \beta_{2} + \beta_1 + 2) q^{37} + (2 \beta_{5} + 2 \beta_{3} - \beta_{2} - \beta_1 + 4) q^{39} + ( - 3 \beta_{5} + \beta_{4} - 3 \beta_{3} + \beta_{2} - 2 \beta_1) q^{41} + (2 \beta_{5} + 2 \beta_{4} + 2 \beta_{3} - 3 \beta_{2} + 3 \beta_1 + 2) q^{43} + (\beta_{5} + \beta_{4} - 2 \beta_{3} - 2 \beta_{2} + \beta_1 - 1) q^{45} + ( - 3 \beta_{5} - 3 \beta_{4} + 6 \beta_{3} + 4 \beta_{2} - 4 \beta_1 + 6) q^{47} + ( - 3 \beta_{5} - \beta_{4} - \beta_{2} - 4 \beta_1) q^{49} + ( - \beta_{5} + \beta_{4} - 4 \beta_{3} - \beta_{2} - 2) q^{51} + ( - 2 \beta_{4} + 2 \beta_{2}) q^{53} + ( - \beta_{5} + \beta_{4} + \beta_1) q^{55} + (\beta_{5} + \beta_{4} + 4 \beta_{3} + \beta_{2} + 2) q^{57} + (2 \beta_{5} + 2 \beta_1) q^{59} + ( - 2 \beta_{5} - 2 \beta_{4} + \beta_{3} + 3 \beta_{2} - 3 \beta_1 + 1) q^{61} + (\beta_{4} - 3 \beta_{2} - \beta_1 - 6) q^{63} + ( - 2 \beta_{3} - \beta_{2} + \beta_1 - 2) q^{65} + ( - 2 \beta_{5} + 3 \beta_{4} - 2 \beta_{3} + 3 \beta_{2} + \beta_1) q^{67} + (3 \beta_{5} - \beta_{4} + 3 \beta_{3} + \beta_1 + 9) q^{69} + (3 \beta_{5} - 5 \beta_{4} + 2 \beta_{2} - 3 \beta_1 + 6) q^{71} + (4 \beta_{4} - 4 \beta_{2} - 4) q^{73} + (\beta_{4} + \beta_1) q^{75} + (\beta_{5} + \beta_{4} + \beta_{2} + 2 \beta_1) q^{77} + ( - 4 \beta_{5} - 4 \beta_{4} + 2 \beta_{3} + 4 \beta_{2} - 4 \beta_1 + 2) q^{79} + (4 \beta_{5} - 2 \beta_{4} - 5 \beta_{3} - 2 \beta_{2} - 2 \beta_1 - 4) q^{81} + (3 \beta_{5} + 3 \beta_{4} - 6 \beta_{3} - 3 \beta_{2} + 3 \beta_1 - 6) q^{83} + ( - \beta_{5} + \beta_{4} + \beta_{2}) q^{85} + (4 \beta_{5} - 3 \beta_{4} - 8 \beta_{3} - 2 \beta_{2} - \beta_1 + 2) q^{87} - 3 q^{89} + ( - \beta_{5} + \beta_{4} + \beta_1 - 4) q^{91} + (2 \beta_{5} + 4 \beta_{4} + 2 \beta_{3} - 7 \beta_{2} + 5 \beta_1 - 8) q^{93} + (\beta_{5} - \beta_{4} - 2 \beta_{3} - \beta_{2}) q^{95} + ( - 2 \beta_{5} - 2 \beta_{4} + 4 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 4) q^{97} + (\beta_{5} - 3 \beta_{4} - 2 \beta_{3} + \beta_{2} + 2 \beta_1 - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} - 3 q^{5} + 5 q^{7} - 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{3} - 3 q^{5} + 5 q^{7} - 7 q^{9} - 2 q^{11} - 4 q^{13} - q^{15} - 4 q^{17} - 8 q^{19} + 3 q^{23} - 3 q^{25} + 2 q^{27} + 7 q^{29} + 8 q^{31} + 20 q^{33} - 10 q^{35} + 12 q^{37} + 14 q^{39} + 13 q^{41} + 10 q^{43} + 2 q^{45} + 13 q^{47} + 2 q^{49} + 4 q^{51} - 4 q^{53} + 4 q^{55} - 2 q^{57} - 2 q^{59} - q^{61} - 33 q^{63} - 4 q^{65} + 11 q^{67} + 39 q^{69} + 20 q^{71} - 16 q^{73} + 2 q^{75} + 2 q^{79} - 19 q^{81} - 15 q^{83} + 2 q^{85} + 26 q^{87} - 18 q^{89} - 20 q^{91} - 42 q^{93} + 4 q^{95} + 18 q^{97} - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 5\nu^{4} + \nu^{3} + 9\nu^{2} - 6\nu - 45 ) / 27 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{5} - \nu^{4} - 2\nu^{3} + 12\nu + 9 ) / 27 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 2\nu^{4} - 2\nu^{3} - 6\nu - 18 ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4\nu^{5} + 2\nu^{4} - 5\nu^{3} + 18\nu^{2} - 24\nu - 72 ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} - 2\beta_{4} - 4\beta_{3} + 2\beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{5} + 2\beta_{4} + \beta_{3} + 4\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{5} + \beta_{4} - 10\beta_{3} - 4\beta_{2} + 6\beta _1 + 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
241.1
0.403374 1.68443i
−1.62241 + 0.606458i
1.71903 + 0.211943i
0.403374 + 1.68443i
−1.62241 0.606458i
1.71903 0.211943i
0 −1.25707 1.19154i 0 −0.500000 0.866025i 0 −0.257068 + 0.445256i 0 0.160442 + 2.99571i 0
241.2 0 −0.285997 + 1.70828i 0 −0.500000 0.866025i 0 0.714003 1.23669i 0 −2.83641 0.977122i 0
241.3 0 1.04307 1.38276i 0 −0.500000 0.866025i 0 2.04307 3.53869i 0 −0.824030 2.88461i 0
481.1 0 −1.25707 + 1.19154i 0 −0.500000 + 0.866025i 0 −0.257068 0.445256i 0 0.160442 2.99571i 0
481.2 0 −0.285997 1.70828i 0 −0.500000 + 0.866025i 0 0.714003 + 1.23669i 0 −2.83641 + 0.977122i 0
481.3 0 1.04307 + 1.38276i 0 −0.500000 + 0.866025i 0 2.04307 + 3.53869i 0 −0.824030 + 2.88461i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 481.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.2.q.i 6
3.b odd 2 1 2160.2.q.k 6
4.b odd 2 1 45.2.e.b 6
9.c even 3 1 inner 720.2.q.i 6
9.c even 3 1 6480.2.a.bv 3
9.d odd 6 1 2160.2.q.k 6
9.d odd 6 1 6480.2.a.bs 3
12.b even 2 1 135.2.e.b 6
20.d odd 2 1 225.2.e.b 6
20.e even 4 2 225.2.k.b 12
36.f odd 6 1 45.2.e.b 6
36.f odd 6 1 405.2.a.j 3
36.h even 6 1 135.2.e.b 6
36.h even 6 1 405.2.a.i 3
60.h even 2 1 675.2.e.b 6
60.l odd 4 2 675.2.k.b 12
180.n even 6 1 675.2.e.b 6
180.n even 6 1 2025.2.a.o 3
180.p odd 6 1 225.2.e.b 6
180.p odd 6 1 2025.2.a.n 3
180.v odd 12 2 675.2.k.b 12
180.v odd 12 2 2025.2.b.m 6
180.x even 12 2 225.2.k.b 12
180.x even 12 2 2025.2.b.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.2.e.b 6 4.b odd 2 1
45.2.e.b 6 36.f odd 6 1
135.2.e.b 6 12.b even 2 1
135.2.e.b 6 36.h even 6 1
225.2.e.b 6 20.d odd 2 1
225.2.e.b 6 180.p odd 6 1
225.2.k.b 12 20.e even 4 2
225.2.k.b 12 180.x even 12 2
405.2.a.i 3 36.h even 6 1
405.2.a.j 3 36.f odd 6 1
675.2.e.b 6 60.h even 2 1
675.2.e.b 6 180.n even 6 1
675.2.k.b 12 60.l odd 4 2
675.2.k.b 12 180.v odd 12 2
720.2.q.i 6 1.a even 1 1 trivial
720.2.q.i 6 9.c even 3 1 inner
2025.2.a.n 3 180.p odd 6 1
2025.2.a.o 3 180.n even 6 1
2025.2.b.l 6 180.x even 12 2
2025.2.b.m 6 180.v odd 12 2
2160.2.q.k 6 3.b odd 2 1
2160.2.q.k 6 9.d odd 6 1
6480.2.a.bs 3 9.d odd 6 1
6480.2.a.bv 3 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(720, [\chi])\):

\( T_{7}^{6} - 5T_{7}^{5} + 22T_{7}^{4} - 21T_{7}^{3} + 24T_{7}^{2} + 9T_{7} + 9 \) Copy content Toggle raw display
\( T_{11}^{6} + 2T_{11}^{5} + 12T_{11}^{4} + 8T_{11}^{3} + 88T_{11}^{2} + 96T_{11} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{5} + 4 T^{4} + 3 T^{3} + \cdots + 27 \) Copy content Toggle raw display
$5$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{6} - 5 T^{5} + 22 T^{4} - 21 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{6} + 2 T^{5} + 12 T^{4} + 8 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$13$ \( T^{6} + 4 T^{5} + 20 T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( (T^{3} + 2 T^{2} - 8 T - 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} + 4 T^{2} - 4 T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 3 T^{5} + 42 T^{4} + \cdots + 13689 \) Copy content Toggle raw display
$29$ \( T^{6} - 7 T^{5} + 78 T^{4} + \cdots + 2601 \) Copy content Toggle raw display
$31$ \( T^{6} - 8 T^{5} + 124 T^{4} + \cdots + 219024 \) Copy content Toggle raw display
$37$ \( (T^{3} - 6 T^{2} - 12 T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 13 T^{5} + 150 T^{4} - 241 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$43$ \( T^{6} - 10 T^{5} + 104 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$47$ \( T^{6} - 13 T^{5} + 180 T^{4} + \cdots + 136161 \) Copy content Toggle raw display
$53$ \( (T^{3} + 2 T^{2} - 20 T - 24)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 2 T^{5} + 24 T^{4} + 8 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$61$ \( T^{6} + T^{5} + 38 T^{4} - 179 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$67$ \( T^{6} - 11 T^{5} + 160 T^{4} + \cdots + 257049 \) Copy content Toggle raw display
$71$ \( (T^{3} - 10 T^{2} - 92 T + 708)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 8 T^{2} - 64 T - 128)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} - 2 T^{5} + 88 T^{4} + 216 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$83$ \( T^{6} + 15 T^{5} + 198 T^{4} + \cdots + 6561 \) Copy content Toggle raw display
$89$ \( (T + 3)^{6} \) Copy content Toggle raw display
$97$ \( T^{6} - 18 T^{5} + 360 T^{4} + \cdots + 1700416 \) Copy content Toggle raw display
show more
show less