Properties

Label 720.2.q.d
Level $720$
Weight $2$
Character orbit 720.q
Analytic conductor $5.749$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( -3 + 3 \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} +O(q^{10})\) \( q + ( 2 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} + ( -3 + 3 \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} + ( -2 + 2 \zeta_{6} ) q^{11} + 2 \zeta_{6} q^{13} + ( 1 + \zeta_{6} ) q^{15} + 4 q^{17} + 8 q^{19} + ( -3 + 6 \zeta_{6} ) q^{21} + 3 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} + ( 1 - \zeta_{6} ) q^{29} + ( -2 + 4 \zeta_{6} ) q^{33} -3 q^{35} -4 q^{37} + ( 2 + 2 \zeta_{6} ) q^{39} -5 \zeta_{6} q^{41} + ( -8 + 8 \zeta_{6} ) q^{43} + 3 q^{45} + ( 7 - 7 \zeta_{6} ) q^{47} -2 \zeta_{6} q^{49} + ( 8 - 4 \zeta_{6} ) q^{51} -2 q^{53} -2 q^{55} + ( 16 - 8 \zeta_{6} ) q^{57} -14 \zeta_{6} q^{59} + ( -7 + 7 \zeta_{6} ) q^{61} + 9 \zeta_{6} q^{63} + ( -2 + 2 \zeta_{6} ) q^{65} -3 \zeta_{6} q^{67} + ( 3 + 3 \zeta_{6} ) q^{69} -2 q^{71} + 4 q^{73} + ( -1 + 2 \zeta_{6} ) q^{75} -6 \zeta_{6} q^{77} + ( -6 + 6 \zeta_{6} ) q^{79} -9 \zeta_{6} q^{81} + ( 9 - 9 \zeta_{6} ) q^{83} + 4 \zeta_{6} q^{85} + ( 1 - 2 \zeta_{6} ) q^{87} -15 q^{89} -6 q^{91} + 8 \zeta_{6} q^{95} + ( -2 + 2 \zeta_{6} ) q^{97} + 6 \zeta_{6} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{3} + q^{5} - 3q^{7} + 3q^{9} + O(q^{10}) \) \( 2q + 3q^{3} + q^{5} - 3q^{7} + 3q^{9} - 2q^{11} + 2q^{13} + 3q^{15} + 8q^{17} + 16q^{19} + 3q^{23} - q^{25} + q^{29} - 6q^{35} - 8q^{37} + 6q^{39} - 5q^{41} - 8q^{43} + 6q^{45} + 7q^{47} - 2q^{49} + 12q^{51} - 4q^{53} - 4q^{55} + 24q^{57} - 14q^{59} - 7q^{61} + 9q^{63} - 2q^{65} - 3q^{67} + 9q^{69} - 4q^{71} + 8q^{73} - 6q^{77} - 6q^{79} - 9q^{81} + 9q^{83} + 4q^{85} - 30q^{89} - 12q^{91} + 8q^{95} - 2q^{97} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
241.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 0.866025i 0 0.500000 + 0.866025i 0 −1.50000 + 2.59808i 0 1.50000 2.59808i 0
481.1 0 1.50000 + 0.866025i 0 0.500000 0.866025i 0 −1.50000 2.59808i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.2.q.d 2
3.b odd 2 1 2160.2.q.a 2
4.b odd 2 1 45.2.e.a 2
9.c even 3 1 inner 720.2.q.d 2
9.c even 3 1 6480.2.a.k 1
9.d odd 6 1 2160.2.q.a 2
9.d odd 6 1 6480.2.a.x 1
12.b even 2 1 135.2.e.a 2
20.d odd 2 1 225.2.e.a 2
20.e even 4 2 225.2.k.a 4
36.f odd 6 1 45.2.e.a 2
36.f odd 6 1 405.2.a.e 1
36.h even 6 1 135.2.e.a 2
36.h even 6 1 405.2.a.b 1
60.h even 2 1 675.2.e.a 2
60.l odd 4 2 675.2.k.a 4
180.n even 6 1 675.2.e.a 2
180.n even 6 1 2025.2.a.e 1
180.p odd 6 1 225.2.e.a 2
180.p odd 6 1 2025.2.a.b 1
180.v odd 12 2 675.2.k.a 4
180.v odd 12 2 2025.2.b.d 2
180.x even 12 2 225.2.k.a 4
180.x even 12 2 2025.2.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.2.e.a 2 4.b odd 2 1
45.2.e.a 2 36.f odd 6 1
135.2.e.a 2 12.b even 2 1
135.2.e.a 2 36.h even 6 1
225.2.e.a 2 20.d odd 2 1
225.2.e.a 2 180.p odd 6 1
225.2.k.a 4 20.e even 4 2
225.2.k.a 4 180.x even 12 2
405.2.a.b 1 36.h even 6 1
405.2.a.e 1 36.f odd 6 1
675.2.e.a 2 60.h even 2 1
675.2.e.a 2 180.n even 6 1
675.2.k.a 4 60.l odd 4 2
675.2.k.a 4 180.v odd 12 2
720.2.q.d 2 1.a even 1 1 trivial
720.2.q.d 2 9.c even 3 1 inner
2025.2.a.b 1 180.p odd 6 1
2025.2.a.e 1 180.n even 6 1
2025.2.b.c 2 180.x even 12 2
2025.2.b.d 2 180.v odd 12 2
2160.2.q.a 2 3.b odd 2 1
2160.2.q.a 2 9.d odd 6 1
6480.2.a.k 1 9.c even 3 1
6480.2.a.x 1 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(720, [\chi])\):

\( T_{7}^{2} + 3 T_{7} + 9 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 3 - 3 T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( 9 + 3 T + T^{2} \)
$11$ \( 4 + 2 T + T^{2} \)
$13$ \( 4 - 2 T + T^{2} \)
$17$ \( ( -4 + T )^{2} \)
$19$ \( ( -8 + T )^{2} \)
$23$ \( 9 - 3 T + T^{2} \)
$29$ \( 1 - T + T^{2} \)
$31$ \( T^{2} \)
$37$ \( ( 4 + T )^{2} \)
$41$ \( 25 + 5 T + T^{2} \)
$43$ \( 64 + 8 T + T^{2} \)
$47$ \( 49 - 7 T + T^{2} \)
$53$ \( ( 2 + T )^{2} \)
$59$ \( 196 + 14 T + T^{2} \)
$61$ \( 49 + 7 T + T^{2} \)
$67$ \( 9 + 3 T + T^{2} \)
$71$ \( ( 2 + T )^{2} \)
$73$ \( ( -4 + T )^{2} \)
$79$ \( 36 + 6 T + T^{2} \)
$83$ \( 81 - 9 T + T^{2} \)
$89$ \( ( 15 + T )^{2} \)
$97$ \( 4 + 2 T + T^{2} \)
show more
show less