Properties

Label 720.2.by.c.529.4
Level $720$
Weight $2$
Character 720.529
Analytic conductor $5.749$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(49,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-4,0,0,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.4
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 720.529
Dual form 720.2.by.c.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.57313 - 0.724745i) q^{3} +(2.03906 - 0.917738i) q^{5} +(-3.85337 - 2.22474i) q^{7} +(1.94949 - 2.28024i) q^{9} +(0.724745 - 1.25529i) q^{11} +(-2.12132 + 1.22474i) q^{13} +(2.54258 - 2.92152i) q^{15} -3.89898i q^{17} -0.550510 q^{19} +(-7.67423 - 0.707107i) q^{21} +(2.51059 - 1.44949i) q^{23} +(3.31552 - 3.74264i) q^{25} +(1.41421 - 5.00000i) q^{27} +(-3.00000 + 5.19615i) q^{29} +(3.22474 + 5.58542i) q^{31} +(0.230351 - 2.50000i) q^{33} +(-9.89898 - 1.00000i) q^{35} -8.00000i q^{37} +(-2.44949 + 3.46410i) q^{39} +(0.500000 + 0.866025i) q^{41} +(6.45145 + 3.72474i) q^{43} +(1.88246 - 6.43866i) q^{45} +(-0.389270 - 0.224745i) q^{47} +(6.39898 + 11.0834i) q^{49} +(-2.82577 - 6.13361i) q^{51} +8.44949i q^{53} +(0.325765 - 3.22474i) q^{55} +(-0.866025 + 0.398979i) q^{57} +(5.62372 + 9.74058i) q^{59} +(0.224745 - 0.389270i) q^{61} +(-12.5851 + 4.44949i) q^{63} +(-3.20150 + 4.44414i) q^{65} +(8.18350 - 4.72474i) q^{67} +(2.89898 - 4.09978i) q^{69} -2.44949 q^{71} -4.79796i q^{73} +(2.50328 - 8.29057i) q^{75} +(-5.58542 + 3.22474i) q^{77} +(3.67423 - 6.36396i) q^{79} +(-1.39898 - 8.89060i) q^{81} +(-3.46410 - 2.00000i) q^{83} +(-3.57824 - 7.95025i) q^{85} +(-0.953512 + 10.3485i) q^{87} -12.8990 q^{89} +10.8990 q^{91} +(9.12096 + 6.44949i) q^{93} +(-1.12252 + 0.505224i) q^{95} +(11.2583 + 6.50000i) q^{97} +(-1.44949 - 4.09978i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5} - 4 q^{9} - 4 q^{11} + 8 q^{15} - 24 q^{19} - 32 q^{21} - 24 q^{29} + 16 q^{31} - 40 q^{35} + 4 q^{41} + 20 q^{45} + 12 q^{49} - 52 q^{51} + 32 q^{55} - 4 q^{59} - 8 q^{61} - 12 q^{65} - 16 q^{69}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.57313 0.724745i 0.908248 0.418432i
\(4\) 0 0
\(5\) 2.03906 0.917738i 0.911894 0.410425i
\(6\) 0 0
\(7\) −3.85337 2.22474i −1.45644 0.840875i −0.457604 0.889156i \(-0.651292\pi\)
−0.998834 + 0.0482818i \(0.984625\pi\)
\(8\) 0 0
\(9\) 1.94949 2.28024i 0.649830 0.760080i
\(10\) 0 0
\(11\) 0.724745 1.25529i 0.218519 0.378486i −0.735837 0.677159i \(-0.763211\pi\)
0.954355 + 0.298674i \(0.0965442\pi\)
\(12\) 0 0
\(13\) −2.12132 + 1.22474i −0.588348 + 0.339683i −0.764444 0.644690i \(-0.776986\pi\)
0.176096 + 0.984373i \(0.443653\pi\)
\(14\) 0 0
\(15\) 2.54258 2.92152i 0.656492 0.754333i
\(16\) 0 0
\(17\) 3.89898i 0.945641i −0.881159 0.472821i \(-0.843236\pi\)
0.881159 0.472821i \(-0.156764\pi\)
\(18\) 0 0
\(19\) −0.550510 −0.126296 −0.0631479 0.998004i \(-0.520114\pi\)
−0.0631479 + 0.998004i \(0.520114\pi\)
\(20\) 0 0
\(21\) −7.67423 0.707107i −1.67466 0.154303i
\(22\) 0 0
\(23\) 2.51059 1.44949i 0.523494 0.302240i −0.214869 0.976643i \(-0.568932\pi\)
0.738363 + 0.674403i \(0.235599\pi\)
\(24\) 0 0
\(25\) 3.31552 3.74264i 0.663103 0.748528i
\(26\) 0 0
\(27\) 1.41421 5.00000i 0.272166 0.962250i
\(28\) 0 0
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) 3.22474 + 5.58542i 0.579181 + 1.00317i 0.995573 + 0.0939863i \(0.0299610\pi\)
−0.416392 + 0.909185i \(0.636706\pi\)
\(32\) 0 0
\(33\) 0.230351 2.50000i 0.0400989 0.435194i
\(34\) 0 0
\(35\) −9.89898 1.00000i −1.67323 0.169031i
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 0 0
\(39\) −2.44949 + 3.46410i −0.392232 + 0.554700i
\(40\) 0 0
\(41\) 0.500000 + 0.866025i 0.0780869 + 0.135250i 0.902424 0.430848i \(-0.141786\pi\)
−0.824338 + 0.566099i \(0.808452\pi\)
\(42\) 0 0
\(43\) 6.45145 + 3.72474i 0.983836 + 0.568018i 0.903426 0.428744i \(-0.141044\pi\)
0.0804103 + 0.996762i \(0.474377\pi\)
\(44\) 0 0
\(45\) 1.88246 6.43866i 0.280621 0.959819i
\(46\) 0 0
\(47\) −0.389270 0.224745i −0.0567808 0.0327824i 0.471341 0.881951i \(-0.343770\pi\)
−0.528122 + 0.849169i \(0.677104\pi\)
\(48\) 0 0
\(49\) 6.39898 + 11.0834i 0.914140 + 1.58334i
\(50\) 0 0
\(51\) −2.82577 6.13361i −0.395686 0.858877i
\(52\) 0 0
\(53\) 8.44949i 1.16063i 0.814393 + 0.580313i \(0.197070\pi\)
−0.814393 + 0.580313i \(0.802930\pi\)
\(54\) 0 0
\(55\) 0.325765 3.22474i 0.0439262 0.434825i
\(56\) 0 0
\(57\) −0.866025 + 0.398979i −0.114708 + 0.0528461i
\(58\) 0 0
\(59\) 5.62372 + 9.74058i 0.732147 + 1.26812i 0.955964 + 0.293484i \(0.0948147\pi\)
−0.223817 + 0.974631i \(0.571852\pi\)
\(60\) 0 0
\(61\) 0.224745 0.389270i 0.0287756 0.0498409i −0.851279 0.524713i \(-0.824173\pi\)
0.880055 + 0.474873i \(0.157506\pi\)
\(62\) 0 0
\(63\) −12.5851 + 4.44949i −1.58557 + 0.560583i
\(64\) 0 0
\(65\) −3.20150 + 4.44414i −0.397097 + 0.551228i
\(66\) 0 0
\(67\) 8.18350 4.72474i 0.999773 0.577219i 0.0915922 0.995797i \(-0.470804\pi\)
0.908181 + 0.418577i \(0.137471\pi\)
\(68\) 0 0
\(69\) 2.89898 4.09978i 0.348996 0.493555i
\(70\) 0 0
\(71\) −2.44949 −0.290701 −0.145350 0.989380i \(-0.546431\pi\)
−0.145350 + 0.989380i \(0.546431\pi\)
\(72\) 0 0
\(73\) 4.79796i 0.561559i −0.959772 0.280779i \(-0.909407\pi\)
0.959772 0.280779i \(-0.0905929\pi\)
\(74\) 0 0
\(75\) 2.50328 8.29057i 0.289054 0.957313i
\(76\) 0 0
\(77\) −5.58542 + 3.22474i −0.636518 + 0.367494i
\(78\) 0 0
\(79\) 3.67423 6.36396i 0.413384 0.716002i −0.581874 0.813279i \(-0.697680\pi\)
0.995257 + 0.0972777i \(0.0310135\pi\)
\(80\) 0 0
\(81\) −1.39898 8.89060i −0.155442 0.987845i
\(82\) 0 0
\(83\) −3.46410 2.00000i −0.380235 0.219529i 0.297686 0.954664i \(-0.403785\pi\)
−0.677920 + 0.735135i \(0.737119\pi\)
\(84\) 0 0
\(85\) −3.57824 7.95025i −0.388115 0.862325i
\(86\) 0 0
\(87\) −0.953512 + 10.3485i −0.102227 + 1.10947i
\(88\) 0 0
\(89\) −12.8990 −1.36729 −0.683645 0.729815i \(-0.739606\pi\)
−0.683645 + 0.729815i \(0.739606\pi\)
\(90\) 0 0
\(91\) 10.8990 1.14252
\(92\) 0 0
\(93\) 9.12096 + 6.44949i 0.945799 + 0.668781i
\(94\) 0 0
\(95\) −1.12252 + 0.505224i −0.115168 + 0.0518349i
\(96\) 0 0
\(97\) 11.2583 + 6.50000i 1.14311 + 0.659975i 0.947199 0.320647i \(-0.103900\pi\)
0.195911 + 0.980622i \(0.437234\pi\)
\(98\) 0 0
\(99\) −1.44949 4.09978i −0.145679 0.412043i
\(100\) 0 0
\(101\) 4.00000 6.92820i 0.398015 0.689382i −0.595466 0.803380i \(-0.703033\pi\)
0.993481 + 0.113998i \(0.0363659\pi\)
\(102\) 0 0
\(103\) −8.87455 + 5.12372i −0.874435 + 0.504856i −0.868820 0.495129i \(-0.835121\pi\)
−0.00561582 + 0.999984i \(0.501788\pi\)
\(104\) 0 0
\(105\) −16.2971 + 5.60110i −1.59044 + 0.546612i
\(106\) 0 0
\(107\) 1.65153i 0.159660i 0.996809 + 0.0798298i \(0.0254377\pi\)
−0.996809 + 0.0798298i \(0.974562\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) −5.79796 12.5851i −0.550318 1.19452i
\(112\) 0 0
\(113\) 4.24264 2.44949i 0.399114 0.230429i −0.286988 0.957934i \(-0.592654\pi\)
0.686102 + 0.727506i \(0.259321\pi\)
\(114\) 0 0
\(115\) 3.78899 5.25966i 0.353325 0.490466i
\(116\) 0 0
\(117\) −1.34278 + 7.22474i −0.124140 + 0.667928i
\(118\) 0 0
\(119\) −8.67423 + 15.0242i −0.795166 + 1.37727i
\(120\) 0 0
\(121\) 4.44949 + 7.70674i 0.404499 + 0.700613i
\(122\) 0 0
\(123\) 1.41421 + 1.00000i 0.127515 + 0.0901670i
\(124\) 0 0
\(125\) 3.32577 10.6742i 0.297465 0.954733i
\(126\) 0 0
\(127\) 2.89898i 0.257243i −0.991694 0.128621i \(-0.958945\pi\)
0.991694 0.128621i \(-0.0410552\pi\)
\(128\) 0 0
\(129\) 12.8485 + 1.18386i 1.13124 + 0.104233i
\(130\) 0 0
\(131\) −2.44949 4.24264i −0.214013 0.370681i 0.738954 0.673756i \(-0.235320\pi\)
−0.952967 + 0.303075i \(0.901987\pi\)
\(132\) 0 0
\(133\) 2.12132 + 1.22474i 0.183942 + 0.106199i
\(134\) 0 0
\(135\) −1.70502 11.4932i −0.146745 0.989174i
\(136\) 0 0
\(137\) 2.59808 + 1.50000i 0.221969 + 0.128154i 0.606861 0.794808i \(-0.292428\pi\)
−0.384893 + 0.922961i \(0.625762\pi\)
\(138\) 0 0
\(139\) 5.62372 + 9.74058i 0.476998 + 0.826185i 0.999653 0.0263597i \(-0.00839153\pi\)
−0.522654 + 0.852545i \(0.675058\pi\)
\(140\) 0 0
\(141\) −0.775255 0.0714323i −0.0652883 0.00601568i
\(142\) 0 0
\(143\) 3.55051i 0.296909i
\(144\) 0 0
\(145\) −1.34847 + 13.3485i −0.111984 + 1.10853i
\(146\) 0 0
\(147\) 18.0990 + 12.7980i 1.49278 + 1.05556i
\(148\) 0 0
\(149\) 8.12372 + 14.0707i 0.665521 + 1.15272i 0.979144 + 0.203169i \(0.0651241\pi\)
−0.313622 + 0.949548i \(0.601543\pi\)
\(150\) 0 0
\(151\) −3.44949 + 5.97469i −0.280715 + 0.486213i −0.971561 0.236789i \(-0.923905\pi\)
0.690846 + 0.723002i \(0.257238\pi\)
\(152\) 0 0
\(153\) −8.89060 7.60102i −0.718763 0.614506i
\(154\) 0 0
\(155\) 11.7014 + 8.42953i 0.939879 + 0.677076i
\(156\) 0 0
\(157\) −13.8564 + 8.00000i −1.10586 + 0.638470i −0.937754 0.347299i \(-0.887099\pi\)
−0.168107 + 0.985769i \(0.553765\pi\)
\(158\) 0 0
\(159\) 6.12372 + 13.2922i 0.485643 + 1.05414i
\(160\) 0 0
\(161\) −12.8990 −1.01658
\(162\) 0 0
\(163\) 0.898979i 0.0704135i 0.999380 + 0.0352068i \(0.0112090\pi\)
−0.999380 + 0.0352068i \(0.988791\pi\)
\(164\) 0 0
\(165\) −1.82465 5.30905i −0.142048 0.413309i
\(166\) 0 0
\(167\) −20.9989 + 12.1237i −1.62494 + 0.938162i −0.639374 + 0.768896i \(0.720806\pi\)
−0.985570 + 0.169266i \(0.945860\pi\)
\(168\) 0 0
\(169\) −3.50000 + 6.06218i −0.269231 + 0.466321i
\(170\) 0 0
\(171\) −1.07321 + 1.25529i −0.0820707 + 0.0959948i
\(172\) 0 0
\(173\) −6.75323 3.89898i −0.513439 0.296434i 0.220807 0.975317i \(-0.429131\pi\)
−0.734246 + 0.678884i \(0.762464\pi\)
\(174\) 0 0
\(175\) −21.1023 + 7.04561i −1.59519 + 0.532598i
\(176\) 0 0
\(177\) 15.9063 + 11.2474i 1.19559 + 0.845410i
\(178\) 0 0
\(179\) 8.89898 0.665141 0.332570 0.943078i \(-0.392084\pi\)
0.332570 + 0.943078i \(0.392084\pi\)
\(180\) 0 0
\(181\) 10.4495 0.776704 0.388352 0.921511i \(-0.373044\pi\)
0.388352 + 0.921511i \(0.373044\pi\)
\(182\) 0 0
\(183\) 0.0714323 0.775255i 0.00528043 0.0573085i
\(184\) 0 0
\(185\) −7.34190 16.3125i −0.539787 1.19932i
\(186\) 0 0
\(187\) −4.89437 2.82577i −0.357912 0.206640i
\(188\) 0 0
\(189\) −16.5732 + 16.1206i −1.20552 + 1.17260i
\(190\) 0 0
\(191\) −3.12372 + 5.41045i −0.226025 + 0.391486i −0.956626 0.291318i \(-0.905906\pi\)
0.730602 + 0.682804i \(0.239240\pi\)
\(192\) 0 0
\(193\) −13.5939 + 7.84847i −0.978514 + 0.564945i −0.901821 0.432110i \(-0.857769\pi\)
−0.0766927 + 0.997055i \(0.524436\pi\)
\(194\) 0 0
\(195\) −1.81552 + 9.31149i −0.130012 + 0.666810i
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 20.4495 1.44963 0.724813 0.688946i \(-0.241926\pi\)
0.724813 + 0.688946i \(0.241926\pi\)
\(200\) 0 0
\(201\) 9.44949 13.3636i 0.666516 0.942595i
\(202\) 0 0
\(203\) 23.1202 13.3485i 1.62272 0.936879i
\(204\) 0 0
\(205\) 1.81431 + 1.30701i 0.126717 + 0.0912853i
\(206\) 0 0
\(207\) 1.58919 8.55051i 0.110456 0.594302i
\(208\) 0 0
\(209\) −0.398979 + 0.691053i −0.0275980 + 0.0478011i
\(210\) 0 0
\(211\) −7.89898 13.6814i −0.543788 0.941869i −0.998682 0.0513231i \(-0.983656\pi\)
0.454894 0.890546i \(-0.349677\pi\)
\(212\) 0 0
\(213\) −3.85337 + 1.77526i −0.264029 + 0.121638i
\(214\) 0 0
\(215\) 16.5732 + 1.67423i 1.13028 + 0.114182i
\(216\) 0 0
\(217\) 28.6969i 1.94808i
\(218\) 0 0
\(219\) −3.47730 7.54782i −0.234974 0.510035i
\(220\) 0 0
\(221\) 4.77526 + 8.27098i 0.321218 + 0.556367i
\(222\) 0 0
\(223\) 16.3670 + 9.44949i 1.09602 + 0.632785i 0.935171 0.354195i \(-0.115245\pi\)
0.160844 + 0.986980i \(0.448579\pi\)
\(224\) 0 0
\(225\) −2.07055 14.8564i −0.138037 0.990427i
\(226\) 0 0
\(227\) −1.25529 0.724745i −0.0833169 0.0481030i 0.457763 0.889074i \(-0.348651\pi\)
−0.541080 + 0.840971i \(0.681984\pi\)
\(228\) 0 0
\(229\) −6.77526 11.7351i −0.447721 0.775476i 0.550516 0.834825i \(-0.314431\pi\)
−0.998237 + 0.0593484i \(0.981098\pi\)
\(230\) 0 0
\(231\) −6.44949 + 9.12096i −0.424345 + 0.600115i
\(232\) 0 0
\(233\) 15.6969i 1.02834i 0.857688 + 0.514170i \(0.171900\pi\)
−0.857688 + 0.514170i \(0.828100\pi\)
\(234\) 0 0
\(235\) −1.00000 0.101021i −0.0652328 0.00658985i
\(236\) 0 0
\(237\) 1.16781 12.6742i 0.0758573 0.823280i
\(238\) 0 0
\(239\) −14.3485 24.8523i −0.928125 1.60756i −0.786456 0.617646i \(-0.788086\pi\)
−0.141669 0.989914i \(-0.545247\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) 0 0
\(243\) −8.64420 12.9722i −0.554526 0.832167i
\(244\) 0 0
\(245\) 23.2195 + 16.7270i 1.48344 + 1.06865i
\(246\) 0 0
\(247\) 1.16781 0.674235i 0.0743059 0.0429005i
\(248\) 0 0
\(249\) −6.89898 0.635674i −0.437205 0.0402842i
\(250\) 0 0
\(251\) −11.4495 −0.722685 −0.361343 0.932433i \(-0.617682\pi\)
−0.361343 + 0.932433i \(0.617682\pi\)
\(252\) 0 0
\(253\) 4.20204i 0.264180i
\(254\) 0 0
\(255\) −11.3909 9.91348i −0.713329 0.620806i
\(256\) 0 0
\(257\) −17.2330 + 9.94949i −1.07497 + 0.620632i −0.929534 0.368736i \(-0.879791\pi\)
−0.145432 + 0.989368i \(0.546457\pi\)
\(258\) 0 0
\(259\) −17.7980 + 30.8270i −1.10591 + 1.91549i
\(260\) 0 0
\(261\) 6.00000 + 16.9706i 0.371391 + 1.05045i
\(262\) 0 0
\(263\) −6.53893 3.77526i −0.403208 0.232792i 0.284659 0.958629i \(-0.408120\pi\)
−0.687867 + 0.725837i \(0.741453\pi\)
\(264\) 0 0
\(265\) 7.75442 + 17.2290i 0.476350 + 1.05837i
\(266\) 0 0
\(267\) −20.2918 + 9.34847i −1.24184 + 0.572117i
\(268\) 0 0
\(269\) 28.0454 1.70996 0.854979 0.518662i \(-0.173570\pi\)
0.854979 + 0.518662i \(0.173570\pi\)
\(270\) 0 0
\(271\) −23.5959 −1.43335 −0.716675 0.697407i \(-0.754337\pi\)
−0.716675 + 0.697407i \(0.754337\pi\)
\(272\) 0 0
\(273\) 17.1455 7.89898i 1.03770 0.478068i
\(274\) 0 0
\(275\) −2.29522 6.87441i −0.138407 0.414542i
\(276\) 0 0
\(277\) 8.31031 + 4.79796i 0.499318 + 0.288281i 0.728432 0.685118i \(-0.240249\pi\)
−0.229114 + 0.973400i \(0.573583\pi\)
\(278\) 0 0
\(279\) 19.0227 + 3.53553i 1.13886 + 0.211667i
\(280\) 0 0
\(281\) −6.00000 + 10.3923i −0.357930 + 0.619953i −0.987615 0.156898i \(-0.949851\pi\)
0.629685 + 0.776851i \(0.283184\pi\)
\(282\) 0 0
\(283\) −3.46410 + 2.00000i −0.205919 + 0.118888i −0.599414 0.800439i \(-0.704600\pi\)
0.393494 + 0.919327i \(0.371266\pi\)
\(284\) 0 0
\(285\) −1.39972 + 1.60833i −0.0829121 + 0.0952690i
\(286\) 0 0
\(287\) 4.44949i 0.262645i
\(288\) 0 0
\(289\) 1.79796 0.105762
\(290\) 0 0
\(291\) 22.4217 + 2.06594i 1.31438 + 0.121108i
\(292\) 0 0
\(293\) 15.5885 9.00000i 0.910687 0.525786i 0.0300351 0.999549i \(-0.490438\pi\)
0.880652 + 0.473763i \(0.157105\pi\)
\(294\) 0 0
\(295\) 20.4064 + 14.7005i 1.18811 + 0.855896i
\(296\) 0 0
\(297\) −5.25153 5.39898i −0.304725 0.313281i
\(298\) 0 0
\(299\) −3.55051 + 6.14966i −0.205331 + 0.355644i
\(300\) 0 0
\(301\) −16.5732 28.7056i −0.955264 1.65457i
\(302\) 0 0
\(303\) 1.27135 13.7980i 0.0730371 0.792672i
\(304\) 0 0
\(305\) 0.101021 1.00000i 0.00578442 0.0572598i
\(306\) 0 0
\(307\) 23.9444i 1.36658i −0.730148 0.683289i \(-0.760549\pi\)
0.730148 0.683289i \(-0.239451\pi\)
\(308\) 0 0
\(309\) −10.2474 + 14.4921i −0.582957 + 0.824426i
\(310\) 0 0
\(311\) 11.4495 + 19.8311i 0.649241 + 1.12452i 0.983304 + 0.181968i \(0.0582467\pi\)
−0.334063 + 0.942551i \(0.608420\pi\)
\(312\) 0 0
\(313\) −6.66574 3.84847i −0.376770 0.217528i 0.299642 0.954052i \(-0.403133\pi\)
−0.676412 + 0.736523i \(0.736466\pi\)
\(314\) 0 0
\(315\) −21.5782 + 20.6225i −1.21579 + 1.16195i
\(316\) 0 0
\(317\) −26.7986 15.4722i −1.50516 0.869005i −0.999982 0.00599020i \(-0.998093\pi\)
−0.505179 0.863015i \(-0.668573\pi\)
\(318\) 0 0
\(319\) 4.34847 + 7.53177i 0.243468 + 0.421698i
\(320\) 0 0
\(321\) 1.19694 + 2.59808i 0.0668066 + 0.145010i
\(322\) 0 0
\(323\) 2.14643i 0.119430i
\(324\) 0 0
\(325\) −2.44949 + 12.0000i −0.135873 + 0.665640i
\(326\) 0 0
\(327\) 12.5851 5.79796i 0.695955 0.320628i
\(328\) 0 0
\(329\) 1.00000 + 1.73205i 0.0551318 + 0.0954911i
\(330\) 0 0
\(331\) 16.6969 28.9199i 0.917747 1.58958i 0.114917 0.993375i \(-0.463340\pi\)
0.802829 0.596209i \(-0.203327\pi\)
\(332\) 0 0
\(333\) −18.2419 15.5959i −0.999651 0.854651i
\(334\) 0 0
\(335\) 12.3506 17.1443i 0.674783 0.936695i
\(336\) 0 0
\(337\) 17.8366 10.2980i 0.971621 0.560966i 0.0718909 0.997413i \(-0.477097\pi\)
0.899730 + 0.436447i \(0.143763\pi\)
\(338\) 0 0
\(339\) 4.89898 6.92820i 0.266076 0.376288i
\(340\) 0 0
\(341\) 9.34847 0.506248
\(342\) 0 0
\(343\) 25.7980i 1.39296i
\(344\) 0 0
\(345\) 2.14867 11.0202i 0.115680 0.593307i
\(346\) 0 0
\(347\) −13.2047 + 7.62372i −0.708864 + 0.409263i −0.810640 0.585544i \(-0.800881\pi\)
0.101776 + 0.994807i \(0.467547\pi\)
\(348\) 0 0
\(349\) 5.79796 10.0424i 0.310358 0.537555i −0.668082 0.744088i \(-0.732885\pi\)
0.978440 + 0.206532i \(0.0662179\pi\)
\(350\) 0 0
\(351\) 3.12372 + 12.3387i 0.166732 + 0.658589i
\(352\) 0 0
\(353\) 5.71223 + 3.29796i 0.304031 + 0.175533i 0.644253 0.764813i \(-0.277169\pi\)
−0.340221 + 0.940345i \(0.610502\pi\)
\(354\) 0 0
\(355\) −4.99465 + 2.24799i −0.265089 + 0.119311i
\(356\) 0 0
\(357\) −2.75699 + 29.9217i −0.145916 + 1.58362i
\(358\) 0 0
\(359\) 8.44949 0.445947 0.222974 0.974825i \(-0.428424\pi\)
0.222974 + 0.974825i \(0.428424\pi\)
\(360\) 0 0
\(361\) −18.6969 −0.984049
\(362\) 0 0
\(363\) 12.5851 + 8.89898i 0.660544 + 0.467075i
\(364\) 0 0
\(365\) −4.40327 9.78332i −0.230478 0.512082i
\(366\) 0 0
\(367\) 10.0424 + 5.79796i 0.524207 + 0.302651i 0.738654 0.674085i \(-0.235462\pi\)
−0.214447 + 0.976736i \(0.568795\pi\)
\(368\) 0 0
\(369\) 2.94949 + 0.548188i 0.153544 + 0.0285375i
\(370\) 0 0
\(371\) 18.7980 32.5590i 0.975941 1.69038i
\(372\) 0 0
\(373\) 22.1667 12.7980i 1.14775 0.662653i 0.199411 0.979916i \(-0.436097\pi\)
0.948338 + 0.317263i \(0.102764\pi\)
\(374\) 0 0
\(375\) −2.50423 19.2023i −0.129318 0.991603i
\(376\) 0 0
\(377\) 14.6969i 0.756931i
\(378\) 0 0
\(379\) −30.1464 −1.54852 −0.774259 0.632869i \(-0.781877\pi\)
−0.774259 + 0.632869i \(0.781877\pi\)
\(380\) 0 0
\(381\) −2.10102 4.56048i −0.107639 0.233640i
\(382\) 0 0
\(383\) −1.55708 + 0.898979i −0.0795630 + 0.0459357i −0.539254 0.842143i \(-0.681294\pi\)
0.459691 + 0.888079i \(0.347960\pi\)
\(384\) 0 0
\(385\) −8.42953 + 11.7014i −0.429609 + 0.596358i
\(386\) 0 0
\(387\) 21.0703 7.44949i 1.07107 0.378679i
\(388\) 0 0
\(389\) 11.2247 19.4418i 0.569117 0.985740i −0.427536 0.903998i \(-0.640618\pi\)
0.996654 0.0817417i \(-0.0260483\pi\)
\(390\) 0 0
\(391\) −5.65153 9.78874i −0.285810 0.495038i
\(392\) 0 0
\(393\) −6.92820 4.89898i −0.349482 0.247121i
\(394\) 0 0
\(395\) 1.65153 16.3485i 0.0830975 0.822581i
\(396\) 0 0
\(397\) 17.7980i 0.893254i −0.894720 0.446627i \(-0.852625\pi\)
0.894720 0.446627i \(-0.147375\pi\)
\(398\) 0 0
\(399\) 4.22474 + 0.389270i 0.211502 + 0.0194879i
\(400\) 0 0
\(401\) −14.3990 24.9398i −0.719051 1.24543i −0.961376 0.275237i \(-0.911244\pi\)
0.242326 0.970195i \(-0.422090\pi\)
\(402\) 0 0
\(403\) −13.6814 7.89898i −0.681521 0.393476i
\(404\) 0 0
\(405\) −11.0118 16.8446i −0.547183 0.837013i
\(406\) 0 0
\(407\) −10.0424 5.79796i −0.497781 0.287394i
\(408\) 0 0
\(409\) 3.05051 + 5.28364i 0.150838 + 0.261259i 0.931536 0.363650i \(-0.118469\pi\)
−0.780698 + 0.624909i \(0.785136\pi\)
\(410\) 0 0
\(411\) 5.17423 + 0.476756i 0.255226 + 0.0235166i
\(412\) 0 0
\(413\) 50.0454i 2.46257i
\(414\) 0 0
\(415\) −8.89898 0.898979i −0.436834 0.0441292i
\(416\) 0 0
\(417\) 15.9063 + 11.2474i 0.778935 + 0.550790i
\(418\) 0 0
\(419\) −0.449490 0.778539i −0.0219590 0.0380341i 0.854837 0.518896i \(-0.173657\pi\)
−0.876796 + 0.480862i \(0.840324\pi\)
\(420\) 0 0
\(421\) 8.22474 14.2457i 0.400850 0.694292i −0.592979 0.805218i \(-0.702048\pi\)
0.993829 + 0.110926i \(0.0353817\pi\)
\(422\) 0 0
\(423\) −1.27135 + 0.449490i −0.0618151 + 0.0218549i
\(424\) 0 0
\(425\) −14.5925 12.9271i −0.707839 0.627058i
\(426\) 0 0
\(427\) −1.73205 + 1.00000i −0.0838198 + 0.0483934i
\(428\) 0 0
\(429\) 2.57321 + 5.58542i 0.124236 + 0.269667i
\(430\) 0 0
\(431\) −13.7526 −0.662437 −0.331219 0.943554i \(-0.607460\pi\)
−0.331219 + 0.943554i \(0.607460\pi\)
\(432\) 0 0
\(433\) 23.0000i 1.10531i 0.833410 + 0.552655i \(0.186385\pi\)
−0.833410 + 0.552655i \(0.813615\pi\)
\(434\) 0 0
\(435\) 7.55291 + 21.9762i 0.362135 + 1.05368i
\(436\) 0 0
\(437\) −1.38211 + 0.797959i −0.0661151 + 0.0381716i
\(438\) 0 0
\(439\) 11.0227 19.0919i 0.526085 0.911206i −0.473453 0.880819i \(-0.656993\pi\)
0.999538 0.0303869i \(-0.00967395\pi\)
\(440\) 0 0
\(441\) 37.7474 + 7.01569i 1.79750 + 0.334080i
\(442\) 0 0
\(443\) −2.81237 1.62372i −0.133620 0.0771455i 0.431700 0.902017i \(-0.357914\pi\)
−0.565320 + 0.824872i \(0.691247\pi\)
\(444\) 0 0
\(445\) −26.3018 + 11.8379i −1.24682 + 0.561169i
\(446\) 0 0
\(447\) 22.9774 + 16.2474i 1.08679 + 0.768478i
\(448\) 0 0
\(449\) 0.797959 0.0376580 0.0188290 0.999823i \(-0.494006\pi\)
0.0188290 + 0.999823i \(0.494006\pi\)
\(450\) 0 0
\(451\) 1.44949 0.0682538
\(452\) 0 0
\(453\) −1.09638 + 11.8990i −0.0515123 + 0.559063i
\(454\) 0 0
\(455\) 22.2237 10.0024i 1.04186 0.468920i
\(456\) 0 0
\(457\) −7.01569 4.05051i −0.328180 0.189475i 0.326853 0.945075i \(-0.394012\pi\)
−0.655033 + 0.755600i \(0.727345\pi\)
\(458\) 0 0
\(459\) −19.4949 5.51399i −0.909944 0.257371i
\(460\) 0 0
\(461\) −1.22474 + 2.12132i −0.0570421 + 0.0987997i −0.893136 0.449786i \(-0.851500\pi\)
0.836094 + 0.548586i \(0.184834\pi\)
\(462\) 0 0
\(463\) −20.7846 + 12.0000i −0.965943 + 0.557687i −0.897997 0.440002i \(-0.854978\pi\)
−0.0679458 + 0.997689i \(0.521644\pi\)
\(464\) 0 0
\(465\) 24.5171 + 4.78024i 1.13695 + 0.221678i
\(466\) 0 0
\(467\) 4.34847i 0.201223i 0.994926 + 0.100612i \(0.0320799\pi\)
−0.994926 + 0.100612i \(0.967920\pi\)
\(468\) 0 0
\(469\) −42.0454 −1.94148
\(470\) 0 0
\(471\) −16.0000 + 22.6274i −0.737241 + 1.04262i
\(472\) 0 0
\(473\) 9.35131 5.39898i 0.429974 0.248245i
\(474\) 0 0
\(475\) −1.82523 + 2.06036i −0.0837471 + 0.0945359i
\(476\) 0 0
\(477\) 19.2669 + 16.4722i 0.882169 + 0.754210i
\(478\) 0 0
\(479\) 6.34847 10.9959i 0.290069 0.502414i −0.683757 0.729710i \(-0.739655\pi\)
0.973826 + 0.227296i \(0.0729884\pi\)
\(480\) 0 0
\(481\) 9.79796 + 16.9706i 0.446748 + 0.773791i
\(482\) 0 0
\(483\) −20.2918 + 9.34847i −0.923309 + 0.425370i
\(484\) 0 0
\(485\) 28.9217 + 2.92168i 1.31327 + 0.132667i
\(486\) 0 0
\(487\) 34.8990i 1.58142i −0.612188 0.790712i \(-0.709711\pi\)
0.612188 0.790712i \(-0.290289\pi\)
\(488\) 0 0
\(489\) 0.651531 + 1.41421i 0.0294632 + 0.0639529i
\(490\) 0 0
\(491\) 11.7247 + 20.3079i 0.529130 + 0.916481i 0.999423 + 0.0339700i \(0.0108151\pi\)
−0.470293 + 0.882511i \(0.655852\pi\)
\(492\) 0 0
\(493\) 20.2597 + 11.6969i 0.912451 + 0.526804i
\(494\) 0 0
\(495\) −6.71811 7.02943i −0.301957 0.315949i
\(496\) 0 0
\(497\) 9.43879 + 5.44949i 0.423388 + 0.244443i
\(498\) 0 0
\(499\) −1.62372 2.81237i −0.0726879 0.125899i 0.827391 0.561627i \(-0.189824\pi\)
−0.900078 + 0.435728i \(0.856491\pi\)
\(500\) 0 0
\(501\) −24.2474 + 34.2911i −1.08330 + 1.53201i
\(502\) 0 0
\(503\) 9.55051i 0.425836i −0.977070 0.212918i \(-0.931703\pi\)
0.977070 0.212918i \(-0.0682968\pi\)
\(504\) 0 0
\(505\) 1.79796 17.7980i 0.0800081 0.791999i
\(506\) 0 0
\(507\) −1.11243 + 12.0732i −0.0494048 + 0.536190i
\(508\) 0 0
\(509\) −3.79796 6.57826i −0.168342 0.291576i 0.769495 0.638652i \(-0.220508\pi\)
−0.937837 + 0.347076i \(0.887174\pi\)
\(510\) 0 0
\(511\) −10.6742 + 18.4883i −0.472200 + 0.817875i
\(512\) 0 0
\(513\) −0.778539 + 2.75255i −0.0343733 + 0.121528i
\(514\) 0 0
\(515\) −13.3935 + 18.5921i −0.590188 + 0.819265i
\(516\) 0 0
\(517\) −0.564242 + 0.325765i −0.0248153 + 0.0143271i
\(518\) 0 0
\(519\) −13.4495 1.23924i −0.590367 0.0543966i
\(520\) 0 0
\(521\) −7.69694 −0.337209 −0.168604 0.985684i \(-0.553926\pi\)
−0.168604 + 0.985684i \(0.553926\pi\)
\(522\) 0 0
\(523\) 29.7980i 1.30297i 0.758660 + 0.651487i \(0.225854\pi\)
−0.758660 + 0.651487i \(0.774146\pi\)
\(524\) 0 0
\(525\) −28.0905 + 26.3775i −1.22597 + 1.15121i
\(526\) 0 0
\(527\) 21.7774 12.5732i 0.948640 0.547698i
\(528\) 0 0
\(529\) −7.29796 + 12.6404i −0.317303 + 0.549584i
\(530\) 0 0
\(531\) 33.1742 + 6.16572i 1.43964 + 0.267569i
\(532\) 0 0
\(533\) −2.12132 1.22474i −0.0918846 0.0530496i
\(534\) 0 0
\(535\) 1.51567 + 3.36757i 0.0655282 + 0.145593i
\(536\) 0 0
\(537\) 13.9993 6.44949i 0.604113 0.278316i
\(538\) 0 0
\(539\) 18.5505 0.799027
\(540\) 0 0
\(541\) −39.5959 −1.70236 −0.851181 0.524873i \(-0.824113\pi\)
−0.851181 + 0.524873i \(0.824113\pi\)
\(542\) 0 0
\(543\) 16.4384 7.57321i 0.705440 0.324998i
\(544\) 0 0
\(545\) 16.3125 7.34190i 0.698749 0.314493i
\(546\) 0 0
\(547\) 6.27647 + 3.62372i 0.268363 + 0.154939i 0.628143 0.778098i \(-0.283815\pi\)
−0.359781 + 0.933037i \(0.617148\pi\)
\(548\) 0 0
\(549\) −0.449490 1.27135i −0.0191838 0.0542599i
\(550\) 0 0
\(551\) 1.65153 2.86054i 0.0703576 0.121863i
\(552\) 0 0
\(553\) −28.3164 + 16.3485i −1.20413 + 0.695208i
\(554\) 0 0
\(555\) −23.3722 20.3407i −0.992093 0.863413i
\(556\) 0 0
\(557\) 38.9444i 1.65013i 0.565040 + 0.825063i \(0.308861\pi\)
−0.565040 + 0.825063i \(0.691139\pi\)
\(558\) 0 0
\(559\) −18.2474 −0.771785
\(560\) 0 0
\(561\) −9.74745 0.898133i −0.411538 0.0379192i
\(562\) 0 0
\(563\) −31.3037 + 18.0732i −1.31929 + 0.761695i −0.983615 0.180281i \(-0.942299\pi\)
−0.335680 + 0.941976i \(0.608966\pi\)
\(564\) 0 0
\(565\) 6.40300 8.88828i 0.269376 0.373933i
\(566\) 0 0
\(567\) −14.3885 + 37.3712i −0.604262 + 1.56944i
\(568\) 0 0
\(569\) 8.74745 15.1510i 0.366712 0.635164i −0.622337 0.782749i \(-0.713817\pi\)
0.989049 + 0.147585i \(0.0471501\pi\)
\(570\) 0 0
\(571\) 6.37628 + 11.0440i 0.266839 + 0.462178i 0.968044 0.250781i \(-0.0806875\pi\)
−0.701205 + 0.712960i \(0.747354\pi\)
\(572\) 0 0
\(573\) −0.992836 + 10.7753i −0.0414763 + 0.450143i
\(574\) 0 0
\(575\) 2.89898 14.2020i 0.120896 0.592266i
\(576\) 0 0
\(577\) 13.6969i 0.570211i −0.958496 0.285106i \(-0.907971\pi\)
0.958496 0.285106i \(-0.0920286\pi\)
\(578\) 0 0
\(579\) −15.6969 + 22.1988i −0.652343 + 0.922552i
\(580\) 0 0
\(581\) 8.89898 + 15.4135i 0.369192 + 0.639459i
\(582\) 0 0
\(583\) 10.6066 + 6.12372i 0.439281 + 0.253619i
\(584\) 0 0
\(585\) 3.89241 + 15.9640i 0.160931 + 0.660030i
\(586\) 0 0
\(587\) −25.9326 14.9722i −1.07035 0.617969i −0.142075 0.989856i \(-0.545377\pi\)
−0.928278 + 0.371887i \(0.878711\pi\)
\(588\) 0 0
\(589\) −1.77526 3.07483i −0.0731481 0.126696i
\(590\) 0 0
\(591\) 5.79796 + 12.5851i 0.238496 + 0.517680i
\(592\) 0 0
\(593\) 41.3939i 1.69984i 0.526910 + 0.849921i \(0.323351\pi\)
−0.526910 + 0.849921i \(0.676649\pi\)
\(594\) 0 0
\(595\) −3.89898 + 38.5959i −0.159843 + 1.58228i
\(596\) 0 0
\(597\) 32.1698 14.8207i 1.31662 0.606569i
\(598\) 0 0
\(599\) −7.10102 12.2993i −0.290140 0.502537i 0.683703 0.729761i \(-0.260368\pi\)
−0.973843 + 0.227224i \(0.927035\pi\)
\(600\) 0 0
\(601\) −9.60102 + 16.6295i −0.391634 + 0.678330i −0.992665 0.120896i \(-0.961423\pi\)
0.601031 + 0.799225i \(0.294757\pi\)
\(602\) 0 0
\(603\) 5.18010 27.8712i 0.210950 1.13500i
\(604\) 0 0
\(605\) 16.1455 + 11.6310i 0.656409 + 0.472869i
\(606\) 0 0
\(607\) 10.0424 5.79796i 0.407607 0.235332i −0.282154 0.959369i \(-0.591049\pi\)
0.689761 + 0.724037i \(0.257716\pi\)
\(608\) 0 0
\(609\) 26.6969 37.7552i 1.08181 1.52992i
\(610\) 0 0
\(611\) 1.10102 0.0445425
\(612\) 0 0
\(613\) 16.9444i 0.684377i 0.939631 + 0.342189i \(0.111168\pi\)
−0.939631 + 0.342189i \(0.888832\pi\)
\(614\) 0 0
\(615\) 3.80140 + 0.741181i 0.153287 + 0.0298873i
\(616\) 0 0
\(617\) −32.6465 + 18.8485i −1.31430 + 0.758811i −0.982805 0.184647i \(-0.940886\pi\)
−0.331494 + 0.943457i \(0.607553\pi\)
\(618\) 0 0
\(619\) 16.7247 28.9681i 0.672224 1.16433i −0.305048 0.952337i \(-0.598672\pi\)
0.977272 0.211989i \(-0.0679943\pi\)
\(620\) 0 0
\(621\) −3.69694 14.6028i −0.148353 0.585992i
\(622\) 0 0
\(623\) 49.7046 + 28.6969i 1.99137 + 1.14972i
\(624\) 0 0
\(625\) −3.01472 24.8176i −0.120589 0.992703i
\(626\) 0 0
\(627\) −0.126811 + 1.37628i −0.00506433 + 0.0549632i
\(628\) 0 0
\(629\) −31.1918 −1.24370
\(630\) 0 0
\(631\) −3.34847 −0.133300 −0.0666502 0.997776i \(-0.521231\pi\)
−0.0666502 + 0.997776i \(0.521231\pi\)
\(632\) 0 0
\(633\) −22.3417 15.7980i −0.888002 0.627912i
\(634\) 0 0
\(635\) −2.66050 5.91119i −0.105579 0.234578i
\(636\) 0 0
\(637\) −27.1486 15.6742i −1.07567 0.621036i
\(638\) 0 0
\(639\) −4.77526 + 5.58542i −0.188906 + 0.220956i
\(640\) 0 0
\(641\) 18.5000 32.0429i 0.730706 1.26562i −0.225876 0.974156i \(-0.572524\pi\)
0.956582 0.291464i \(-0.0941423\pi\)
\(642\) 0 0
\(643\) 8.00853 4.62372i 0.315825 0.182342i −0.333705 0.942678i \(-0.608299\pi\)
0.649530 + 0.760336i \(0.274966\pi\)
\(644\) 0 0
\(645\) 27.2852 9.37756i 1.07436 0.369241i
\(646\) 0 0
\(647\) 25.1010i 0.986823i 0.869796 + 0.493411i \(0.164250\pi\)
−0.869796 + 0.493411i \(0.835750\pi\)
\(648\) 0 0
\(649\) 16.3031 0.639951
\(650\) 0 0
\(651\) −20.7980 45.1441i −0.815136 1.76934i
\(652\) 0 0
\(653\) −29.4449 + 17.0000i −1.15227 + 0.665261i −0.949439 0.313953i \(-0.898347\pi\)
−0.202828 + 0.979214i \(0.565013\pi\)
\(654\) 0 0
\(655\) −8.88828 6.40300i −0.347294 0.250186i
\(656\) 0 0
\(657\) −10.9405 9.35357i −0.426829 0.364918i
\(658\) 0 0
\(659\) 8.10102 14.0314i 0.315571 0.546585i −0.663988 0.747743i \(-0.731137\pi\)
0.979559 + 0.201159i \(0.0644706\pi\)
\(660\) 0 0
\(661\) 6.89898 + 11.9494i 0.268339 + 0.464777i 0.968433 0.249274i \(-0.0801919\pi\)
−0.700094 + 0.714051i \(0.746859\pi\)
\(662\) 0 0
\(663\) 13.5065 + 9.55051i 0.524547 + 0.370911i
\(664\) 0 0
\(665\) 5.44949 + 0.550510i 0.211322 + 0.0213479i
\(666\) 0 0
\(667\) 17.3939i 0.673494i
\(668\) 0 0
\(669\) 32.5959 + 3.00340i 1.26023 + 0.116118i
\(670\) 0 0
\(671\) −0.325765 0.564242i −0.0125760 0.0217823i
\(672\) 0 0
\(673\) 16.5420 + 9.55051i 0.637646 + 0.368145i 0.783707 0.621130i \(-0.213326\pi\)
−0.146061 + 0.989276i \(0.546660\pi\)
\(674\) 0 0
\(675\) −14.0244 21.8705i −0.539798 0.841795i
\(676\) 0 0
\(677\) 0.349945 + 0.202041i 0.0134495 + 0.00776507i 0.506710 0.862117i \(-0.330862\pi\)
−0.493260 + 0.869882i \(0.664195\pi\)
\(678\) 0 0
\(679\) −28.9217 50.0938i −1.10991 1.92242i
\(680\) 0 0
\(681\) −2.50000 0.230351i −0.0958002 0.00882707i
\(682\) 0 0
\(683\) 40.5505i 1.55162i 0.630965 + 0.775811i \(0.282659\pi\)
−0.630965 + 0.775811i \(0.717341\pi\)
\(684\) 0 0
\(685\) 6.67423 + 0.674235i 0.255009 + 0.0257612i
\(686\) 0 0
\(687\) −19.1633 13.5505i −0.731126 0.516984i
\(688\) 0 0
\(689\) −10.3485 17.9241i −0.394245 0.682853i
\(690\) 0 0
\(691\) −10.7980 + 18.7026i −0.410774 + 0.711481i −0.994975 0.100128i \(-0.968075\pi\)
0.584201 + 0.811609i \(0.301408\pi\)
\(692\) 0 0
\(693\) −3.53553 + 19.0227i −0.134304 + 0.722613i
\(694\) 0 0
\(695\) 20.4064 + 14.7005i 0.774059 + 0.557622i
\(696\) 0 0
\(697\) 3.37662 1.94949i 0.127898 0.0738422i
\(698\) 0 0
\(699\) 11.3763 + 24.6934i 0.430290 + 0.933989i
\(700\) 0 0
\(701\) 19.3939 0.732497 0.366248 0.930517i \(-0.380642\pi\)
0.366248 + 0.930517i \(0.380642\pi\)
\(702\) 0 0
\(703\) 4.40408i 0.166103i
\(704\) 0 0
\(705\) −1.64635 + 0.565826i −0.0620050 + 0.0213102i
\(706\) 0 0
\(707\) −30.8270 + 17.7980i −1.15937 + 0.669361i
\(708\) 0 0
\(709\) 11.3258 19.6168i 0.425348 0.736724i −0.571105 0.820877i \(-0.693485\pi\)
0.996453 + 0.0841527i \(0.0268184\pi\)
\(710\) 0 0
\(711\) −7.34847 20.7846i −0.275589 0.779484i
\(712\) 0 0
\(713\) 16.1920 + 9.34847i 0.606396 + 0.350103i
\(714\) 0 0
\(715\) 3.25844 + 7.23970i 0.121859 + 0.270749i
\(716\) 0 0
\(717\) −40.5836 28.6969i −1.51562 1.07171i
\(718\) 0 0
\(719\) 22.2020 0.827996 0.413998 0.910278i \(-0.364132\pi\)
0.413998 + 0.910278i \(0.364132\pi\)
\(720\) 0 0
\(721\) 45.5959 1.69808
\(722\) 0 0
\(723\) −0.158919 + 1.72474i −0.00591025 + 0.0641440i
\(724\) 0 0
\(725\) 9.50079 + 28.4558i 0.352850 + 1.05682i
\(726\) 0 0
\(727\) 9.22450 + 5.32577i 0.342118 + 0.197522i 0.661208 0.750203i \(-0.270044\pi\)
−0.319090 + 0.947724i \(0.603377\pi\)
\(728\) 0 0
\(729\) −23.0000 14.1421i −0.851852 0.523783i
\(730\) 0 0
\(731\) 14.5227 25.1541i 0.537142 0.930357i
\(732\) 0 0
\(733\) −11.3851 + 6.57321i −0.420520 + 0.242787i −0.695300 0.718720i \(-0.744728\pi\)
0.274780 + 0.961507i \(0.411395\pi\)
\(734\) 0 0
\(735\) 48.6502 + 9.48560i 1.79449 + 0.349882i
\(736\) 0 0
\(737\) 13.6969i 0.504533i
\(738\) 0 0
\(739\) 7.24745 0.266602 0.133301 0.991076i \(-0.457442\pi\)
0.133301 + 0.991076i \(0.457442\pi\)
\(740\) 0 0
\(741\) 1.34847 1.90702i 0.0495373 0.0700563i
\(742\) 0 0
\(743\) 11.3458 6.55051i 0.416238 0.240315i −0.277229 0.960804i \(-0.589416\pi\)
0.693466 + 0.720489i \(0.256083\pi\)
\(744\) 0 0
\(745\) 29.4780 + 21.2355i 1.07999 + 0.778010i
\(746\) 0 0
\(747\) −11.3137 + 4.00000i −0.413947 + 0.146352i
\(748\) 0 0
\(749\) 3.67423 6.36396i 0.134254 0.232534i
\(750\) 0 0
\(751\) 22.4949 + 38.9623i 0.820850 + 1.42175i 0.905050 + 0.425306i \(0.139833\pi\)
−0.0841993 + 0.996449i \(0.526833\pi\)
\(752\) 0 0
\(753\) −18.0116 + 8.29796i −0.656378 + 0.302394i
\(754\) 0 0
\(755\) −1.55051 + 15.3485i −0.0564288 + 0.558588i
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 0 0
\(759\) −3.04541 6.61037i −0.110541 0.239941i
\(760\) 0 0
\(761\) 24.2474 + 41.9978i 0.878969 + 1.52242i 0.852473 + 0.522771i \(0.175102\pi\)
0.0264959 + 0.999649i \(0.491565\pi\)
\(762\) 0 0
\(763\) −30.8270 17.7980i −1.11601 0.644329i
\(764\) 0 0
\(765\) −25.1042 7.33968i −0.907644 0.265367i
\(766\) 0 0
\(767\) −23.8594 13.7753i −0.861515 0.497396i
\(768\) 0 0
\(769\) −12.2474 21.2132i −0.441654 0.764968i 0.556158 0.831076i \(-0.312275\pi\)
−0.997812 + 0.0661088i \(0.978942\pi\)
\(770\) 0 0
\(771\) −19.8990 + 28.1414i −0.716644 + 1.01349i
\(772\) 0 0
\(773\) 23.3939i 0.841419i −0.907195 0.420710i \(-0.861781\pi\)
0.907195 0.420710i \(-0.138219\pi\)
\(774\) 0 0
\(775\) 31.5959 + 6.44949i 1.13496 + 0.231673i
\(776\) 0 0
\(777\) −5.65685 + 61.3939i −0.202939 + 2.20249i
\(778\) 0 0
\(779\) −0.275255 0.476756i −0.00986204 0.0170816i
\(780\) 0 0
\(781\) −1.77526 + 3.07483i −0.0635236 + 0.110026i
\(782\) 0 0
\(783\) 21.7381 + 22.3485i 0.776857 + 0.798669i
\(784\) 0 0
\(785\) −20.9121 + 29.0290i −0.746385 + 1.03609i
\(786\) 0 0
\(787\) 6.40329 3.69694i 0.228252 0.131782i −0.381513 0.924363i \(-0.624597\pi\)
0.609766 + 0.792582i \(0.291264\pi\)
\(788\) 0 0
\(789\) −13.0227 1.19992i −0.463621 0.0427182i
\(790\) 0 0
\(791\) −21.7980 −0.775046
\(792\) 0 0
\(793\) 1.10102i 0.0390984i
\(794\) 0 0
\(795\) 24.6853 + 21.4835i 0.875499 + 0.761942i
\(796\) 0 0
\(797\) 30.8270 17.7980i 1.09195 0.630436i 0.157853 0.987463i \(-0.449543\pi\)
0.934094 + 0.357027i \(0.116209\pi\)
\(798\) 0 0
\(799\) −0.876276 + 1.51775i −0.0310004 + 0.0536943i
\(800\) 0 0
\(801\) −25.1464 + 29.4128i −0.888505 + 1.03925i
\(802\) 0 0
\(803\) −6.02285 3.47730i −0.212542 0.122711i
\(804\) 0 0
\(805\) −26.3018 + 11.8379i −0.927015 + 0.417230i
\(806\) 0 0
\(807\) 44.1191 20.3258i 1.55307 0.715501i
\(808\) 0 0
\(809\) −47.0908 −1.65562 −0.827812 0.561005i \(-0.810415\pi\)
−0.827812 + 0.561005i \(0.810415\pi\)
\(810\) 0 0
\(811\) 17.2474 0.605640 0.302820 0.953048i \(-0.402072\pi\)
0.302820 + 0.953048i \(0.402072\pi\)
\(812\) 0 0
\(813\) −37.1195 + 17.1010i −1.30184 + 0.599759i
\(814\) 0 0
\(815\) 0.825027 + 1.83307i 0.0288994 + 0.0642097i
\(816\) 0 0
\(817\) −3.55159 2.05051i −0.124254 0.0717383i
\(818\) 0 0
\(819\) 21.2474 24.8523i 0.742446 0.868409i
\(820\) 0 0
\(821\) 21.0227 36.4124i 0.733697 1.27080i −0.221595 0.975139i \(-0.571126\pi\)
0.955292 0.295662i \(-0.0955404\pi\)
\(822\) 0 0
\(823\) −6.57826 + 3.79796i −0.229304 + 0.132389i −0.610251 0.792208i \(-0.708931\pi\)
0.380947 + 0.924597i \(0.375598\pi\)
\(824\) 0 0
\(825\) −8.59287 9.15091i −0.299165 0.318594i
\(826\) 0 0
\(827\) 13.7980i 0.479802i −0.970797 0.239901i \(-0.922885\pi\)
0.970797 0.239901i \(-0.0771150\pi\)
\(828\) 0 0
\(829\) 21.5505 0.748480 0.374240 0.927332i \(-0.377904\pi\)
0.374240 + 0.927332i \(0.377904\pi\)
\(830\) 0 0
\(831\) 16.5505 + 1.52497i 0.574131 + 0.0529006i
\(832\) 0 0
\(833\) 43.2138 24.9495i 1.49727 0.864449i
\(834\) 0 0
\(835\) −31.6916 + 43.9925i −1.09673 + 1.52242i
\(836\) 0 0
\(837\) 32.4876 8.22474i 1.12294 0.284289i
\(838\) 0 0
\(839\) −7.87628 + 13.6421i −0.271919 + 0.470978i −0.969353 0.245671i \(-0.920992\pi\)
0.697434 + 0.716649i \(0.254325\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 0 0
\(843\) −1.90702 + 20.6969i −0.0656814 + 0.712840i
\(844\) 0 0
\(845\) −1.57321 + 15.5732i −0.0541202 + 0.535735i
\(846\) 0 0
\(847\) 39.5959i 1.36053i
\(848\) 0 0
\(849\) −4.00000 + 5.65685i −0.137280 + 0.194143i
\(850\) 0 0
\(851\) −11.5959 20.0847i −0.397503 0.688495i
\(852\) 0 0
\(853\) 21.7774 + 12.5732i 0.745646 + 0.430499i 0.824118 0.566418i \(-0.191671\pi\)
−0.0784728 + 0.996916i \(0.525004\pi\)
\(854\) 0 0
\(855\) −1.03631 + 3.54455i −0.0354412 + 0.121221i
\(856\) 0 0
\(857\) −46.2405 26.6969i −1.57954 0.911950i −0.994923 0.100644i \(-0.967910\pi\)
−0.584621 0.811306i \(-0.698757\pi\)
\(858\) 0 0
\(859\) −17.8712 30.9538i −0.609757 1.05613i −0.991280 0.131770i \(-0.957934\pi\)
0.381524 0.924359i \(-0.375399\pi\)
\(860\) 0 0
\(861\) −3.22474 6.99964i −0.109899 0.238547i
\(862\) 0 0
\(863\) 21.5505i 0.733588i −0.930302 0.366794i \(-0.880455\pi\)
0.930302 0.366794i \(-0.119545\pi\)
\(864\) 0 0
\(865\) −17.3485 1.75255i −0.589866 0.0595885i
\(866\) 0 0
\(867\) 2.82843 1.30306i 0.0960584 0.0442543i
\(868\) 0 0
\(869\) −5.32577 9.22450i −0.180664 0.312920i
\(870\) 0 0
\(871\) −11.5732 + 20.0454i −0.392143 + 0.679212i
\(872\) 0 0
\(873\) 36.7696 13.0000i 1.24446 0.439983i
\(874\) 0 0
\(875\) −36.5629 + 33.7328i −1.23605 + 1.14038i
\(876\) 0 0
\(877\) 47.7582 27.5732i 1.61268 0.931081i 0.623934 0.781477i \(-0.285533\pi\)
0.988746 0.149604i \(-0.0478000\pi\)
\(878\) 0 0
\(879\) 18.0000 25.4558i 0.607125 0.858604i
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 11.4495i 0.385306i 0.981267 + 0.192653i \(0.0617092\pi\)
−0.981267 + 0.192653i \(0.938291\pi\)
\(884\) 0 0
\(885\) 42.7561 + 8.33639i 1.43723 + 0.280225i
\(886\) 0 0
\(887\) 4.02834 2.32577i 0.135259 0.0780916i −0.430844 0.902427i \(-0.641784\pi\)
0.566102 + 0.824335i \(0.308451\pi\)
\(888\) 0 0
\(889\) −6.44949 + 11.1708i −0.216309 + 0.374658i
\(890\) 0 0
\(891\) −12.1742 4.68729i −0.407852 0.157030i
\(892\) 0 0
\(893\) 0.214297 + 0.123724i 0.00717117 + 0.00414028i
\(894\) 0 0
\(895\) 18.1455 8.16693i 0.606538 0.272990i
\(896\) 0 0
\(897\) −1.12848 + 12.2474i −0.0376790 + 0.408930i
\(898\) 0 0
\(899\) −38.6969 −1.29062
\(900\) 0 0
\(901\) 32.9444 1.09754
\(902\) 0 0
\(903\) −46.8761 33.1464i −1.55994 1.10304i
\(904\) 0 0
\(905\) 21.3071 9.58989i 0.708272 0.318779i
\(906\) 0 0
\(907\) −29.2217 16.8712i −0.970292 0.560198i −0.0709665 0.997479i \(-0.522608\pi\)
−0.899325 + 0.437281i \(0.855942\pi\)
\(908\) 0 0
\(909\) −8.00000 22.6274i −0.265343 0.750504i
\(910\) 0 0
\(911\) −0.123724 + 0.214297i −0.00409917 + 0.00709997i −0.868068 0.496446i \(-0.834638\pi\)
0.863969 + 0.503546i \(0.167971\pi\)
\(912\) 0 0
\(913\) −5.02118 + 2.89898i −0.166177 + 0.0959422i
\(914\) 0 0
\(915\) −0.565826 1.64635i −0.0187056 0.0544265i
\(916\) 0 0
\(917\) 21.7980i 0.719832i
\(918\) 0 0
\(919\) 10.8990 0.359524 0.179762 0.983710i \(-0.442467\pi\)
0.179762 + 0.983710i \(0.442467\pi\)
\(920\) 0 0
\(921\) −17.3536 37.6677i −0.571820 1.24119i
\(922\) 0 0
\(923\) 5.19615 3.00000i 0.171033 0.0987462i
\(924\) 0 0
\(925\) −29.9411 26.5241i −0.984458 0.872108i
\(926\) 0 0
\(927\) −5.61753 + 30.2247i −0.184504 + 0.992711i
\(928\) 0 0
\(929\) −27.7980 + 48.1475i −0.912021 + 1.57967i −0.100817 + 0.994905i \(0.532146\pi\)
−0.811205 + 0.584762i \(0.801188\pi\)
\(930\) 0 0
\(931\) −3.52270 6.10150i −0.115452 0.199969i
\(932\) 0 0
\(933\) 32.3840 + 22.8990i 1.06021 + 0.749679i
\(934\) 0 0
\(935\) −12.5732 1.27015i −0.411188 0.0415384i
\(936\) 0 0
\(937\) 39.5959i 1.29354i 0.762684 + 0.646771i \(0.223881\pi\)
−0.762684 + 0.646771i \(0.776119\pi\)
\(938\) 0 0
\(939\) −13.2753 1.22319i −0.433222 0.0399172i
\(940\) 0 0
\(941\) 24.8990 + 43.1263i 0.811684 + 1.40588i 0.911685 + 0.410890i \(0.134782\pi\)
−0.100001 + 0.994987i \(0.531885\pi\)
\(942\) 0 0
\(943\) 2.51059 + 1.44949i 0.0817561 + 0.0472019i
\(944\) 0 0
\(945\) −18.9993 + 48.0807i −0.618046 + 1.56406i
\(946\) 0 0
\(947\) 18.4008 + 10.6237i 0.597947 + 0.345225i 0.768233 0.640170i \(-0.221136\pi\)
−0.170287 + 0.985395i \(0.554469\pi\)
\(948\) 0 0
\(949\) 5.87628 + 10.1780i 0.190752 + 0.330392i
\(950\) 0 0
\(951\) −53.3712 4.91764i −1.73068 0.159465i
\(952\) 0 0
\(953\) 50.7980i 1.64551i −0.568398 0.822754i \(-0.692437\pi\)
0.568398 0.822754i \(-0.307563\pi\)
\(954\) 0 0
\(955\) −1.40408 + 13.8990i −0.0454350 + 0.449760i
\(956\) 0 0
\(957\) 12.2993 + 8.69694i 0.397581 + 0.281132i
\(958\) 0 0
\(959\) −6.67423 11.5601i −0.215522 0.373296i
\(960\) 0 0
\(961\) −5.29796 + 9.17633i −0.170902 + 0.296011i
\(962\) 0 0
\(963\) 3.76588 + 3.21964i 0.121354 + 0.103752i
\(964\) 0 0
\(965\) −20.5160 + 28.4792i −0.660434 + 0.916777i
\(966\) 0 0
\(967\) −24.8523 + 14.3485i −0.799195 + 0.461416i −0.843190 0.537616i \(-0.819325\pi\)
0.0439944 + 0.999032i \(0.485992\pi\)
\(968\) 0 0
\(969\) 1.55561 + 3.37662i 0.0499735 + 0.108473i
\(970\) 0 0
\(971\) 23.3939 0.750745 0.375373 0.926874i \(-0.377515\pi\)
0.375373 + 0.926874i \(0.377515\pi\)
\(972\) 0 0
\(973\) 50.0454i 1.60438i
\(974\) 0 0
\(975\) 4.84357 + 20.6528i 0.155118 + 0.661420i
\(976\) 0 0
\(977\) −32.8215 + 18.9495i −1.05005 + 0.606248i −0.922664 0.385605i \(-0.873993\pi\)
−0.127388 + 0.991853i \(0.540659\pi\)
\(978\) 0 0
\(979\) −9.34847 + 16.1920i −0.298778 + 0.517499i
\(980\) 0 0
\(981\) 15.5959 18.2419i 0.497939 0.582419i
\(982\) 0 0
\(983\) −32.3840 18.6969i −1.03289 0.596340i −0.115079 0.993356i \(-0.536712\pi\)
−0.917811 + 0.397017i \(0.870046\pi\)
\(984\) 0 0
\(985\) 7.34190 + 16.3125i 0.233932 + 0.519758i
\(986\) 0 0
\(987\) 2.82843 + 2.00000i 0.0900298 + 0.0636607i
\(988\) 0 0
\(989\) 21.5959 0.686710
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 0 0
\(993\) 5.30691 57.5959i 0.168410 1.82775i
\(994\) 0 0
\(995\) 41.6977 18.7673i 1.32191 0.594962i
\(996\) 0 0
\(997\) −28.5307 16.4722i −0.903576 0.521680i −0.0252170 0.999682i \(-0.508028\pi\)
−0.878359 + 0.478002i \(0.841361\pi\)
\(998\) 0 0
\(999\) −40.0000 11.3137i −1.26554 0.357950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.by.c.529.4 8
3.2 odd 2 2160.2.by.d.289.1 8
4.3 odd 2 90.2.i.b.79.1 yes 8
5.4 even 2 inner 720.2.by.c.529.1 8
9.4 even 3 inner 720.2.by.c.49.1 8
9.5 odd 6 2160.2.by.d.1009.4 8
12.11 even 2 270.2.i.b.19.3 8
15.14 odd 2 2160.2.by.d.289.4 8
20.3 even 4 450.2.e.k.151.1 4
20.7 even 4 450.2.e.n.151.2 4
20.19 odd 2 90.2.i.b.79.4 yes 8
36.7 odd 6 810.2.c.f.649.3 4
36.11 even 6 810.2.c.e.649.2 4
36.23 even 6 270.2.i.b.199.2 8
36.31 odd 6 90.2.i.b.49.4 yes 8
45.4 even 6 inner 720.2.by.c.49.4 8
45.14 odd 6 2160.2.by.d.1009.1 8
60.23 odd 4 1350.2.e.m.451.2 4
60.47 odd 4 1350.2.e.j.451.1 4
60.59 even 2 270.2.i.b.19.2 8
180.7 even 12 4050.2.a.bq.1.2 2
180.23 odd 12 1350.2.e.m.901.2 4
180.43 even 12 4050.2.a.bs.1.1 2
180.47 odd 12 4050.2.a.bz.1.2 2
180.59 even 6 270.2.i.b.199.3 8
180.67 even 12 450.2.e.n.301.2 4
180.79 odd 6 810.2.c.f.649.1 4
180.83 odd 12 4050.2.a.bm.1.1 2
180.103 even 12 450.2.e.k.301.1 4
180.119 even 6 810.2.c.e.649.4 4
180.139 odd 6 90.2.i.b.49.1 8
180.167 odd 12 1350.2.e.j.901.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.b.49.1 8 180.139 odd 6
90.2.i.b.49.4 yes 8 36.31 odd 6
90.2.i.b.79.1 yes 8 4.3 odd 2
90.2.i.b.79.4 yes 8 20.19 odd 2
270.2.i.b.19.2 8 60.59 even 2
270.2.i.b.19.3 8 12.11 even 2
270.2.i.b.199.2 8 36.23 even 6
270.2.i.b.199.3 8 180.59 even 6
450.2.e.k.151.1 4 20.3 even 4
450.2.e.k.301.1 4 180.103 even 12
450.2.e.n.151.2 4 20.7 even 4
450.2.e.n.301.2 4 180.67 even 12
720.2.by.c.49.1 8 9.4 even 3 inner
720.2.by.c.49.4 8 45.4 even 6 inner
720.2.by.c.529.1 8 5.4 even 2 inner
720.2.by.c.529.4 8 1.1 even 1 trivial
810.2.c.e.649.2 4 36.11 even 6
810.2.c.e.649.4 4 180.119 even 6
810.2.c.f.649.1 4 180.79 odd 6
810.2.c.f.649.3 4 36.7 odd 6
1350.2.e.j.451.1 4 60.47 odd 4
1350.2.e.j.901.1 4 180.167 odd 12
1350.2.e.m.451.2 4 60.23 odd 4
1350.2.e.m.901.2 4 180.23 odd 12
2160.2.by.d.289.1 8 3.2 odd 2
2160.2.by.d.289.4 8 15.14 odd 2
2160.2.by.d.1009.1 8 45.14 odd 6
2160.2.by.d.1009.4 8 9.5 odd 6
4050.2.a.bm.1.1 2 180.83 odd 12
4050.2.a.bq.1.2 2 180.7 even 12
4050.2.a.bs.1.1 2 180.43 even 12
4050.2.a.bz.1.2 2 180.47 odd 12