Properties

Label 720.2.bd.f.523.4
Level $720$
Weight $2$
Character 720.523
Analytic conductor $5.749$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(307,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,0,8,8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 523.4
Root \(-1.20803 - 0.735291i\) of defining polynomial
Character \(\chi\) \(=\) 720.523
Dual form 720.2.bd.f.307.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.873858 + 1.11192i) q^{2} +(-0.472743 - 1.94333i) q^{4} +(-1.54804 + 1.61356i) q^{5} +(0.143894 - 0.143894i) q^{7} +(2.57394 + 1.17254i) q^{8} +(-0.441393 - 3.13132i) q^{10} +(-0.749545 + 0.749545i) q^{11} +3.29132 q^{13} +(0.0342559 + 0.285741i) q^{14} +(-3.55303 + 1.83739i) q^{16} +(-1.35709 + 1.35709i) q^{17} +(-4.25468 + 4.25468i) q^{19} +(3.86750 + 2.24554i) q^{20} +(-0.178440 - 1.48843i) q^{22} +(-0.837388 - 0.837388i) q^{23} +(-0.207170 - 4.99571i) q^{25} +(-2.87614 + 3.65969i) q^{26} +(-0.347657 - 0.211607i) q^{28} +(-2.77462 - 2.77462i) q^{29} +6.60915i q^{31} +(1.06181 - 5.55631i) q^{32} +(-0.323074 - 2.69488i) q^{34} +(0.00942893 + 0.454934i) q^{35} -10.0194 q^{37} +(-1.01289 - 8.44886i) q^{38} +(-5.87651 + 2.33808i) q^{40} -1.72608i q^{41} -4.17171 q^{43} +(1.81095 + 1.10227i) q^{44} +(1.66287 - 0.199352i) q^{46} +(-8.54502 - 8.54502i) q^{47} +6.95859i q^{49} +(5.73588 + 4.13518i) q^{50} +(-1.55595 - 6.39610i) q^{52} +5.05524i q^{53} +(-0.0491155 - 2.36976i) q^{55} +(0.539094 - 0.201653i) q^{56} +(5.50979 - 0.660538i) q^{58} +(3.08237 + 3.08237i) q^{59} +(-5.00346 + 5.00346i) q^{61} +(-7.34887 - 5.77546i) q^{62} +(5.25031 + 6.03608i) q^{64} +(-5.09507 + 5.31074i) q^{65} -4.26739 q^{67} +(3.27881 + 1.99571i) q^{68} +(-0.514091 - 0.387064i) q^{70} -13.2111 q^{71} +(11.6889 - 11.6889i) q^{73} +(8.75550 - 11.1407i) q^{74} +(10.2796 + 6.25686i) q^{76} +0.215710i q^{77} -9.95558 q^{79} +(2.53547 - 8.57738i) q^{80} +(1.91927 + 1.50835i) q^{82} +10.0134i q^{83} +(-0.0889259 - 4.29056i) q^{85} +(3.64549 - 4.63862i) q^{86} +(-2.80815 + 1.05041i) q^{88} +5.76005 q^{89} +(0.473599 - 0.473599i) q^{91} +(-1.23145 + 2.02319i) q^{92} +(16.9685 - 2.03426i) q^{94} +(-0.278797 - 13.4516i) q^{95} +(11.7668 - 11.7668i) q^{97} +(-7.73741 - 6.08082i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 8 q^{4} + 8 q^{5} - 4 q^{7} - 8 q^{8} - 2 q^{10} - 8 q^{13} - 4 q^{14} - 8 q^{16} + 8 q^{17} - 8 q^{19} - 4 q^{20} - 32 q^{25} - 20 q^{26} + 12 q^{28} + 12 q^{29} + 28 q^{32} - 12 q^{35}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.873858 + 1.11192i −0.617911 + 0.786248i
\(3\) 0 0
\(4\) −0.472743 1.94333i −0.236372 0.971663i
\(5\) −1.54804 + 1.61356i −0.692303 + 0.721607i
\(6\) 0 0
\(7\) 0.143894 0.143894i 0.0543867 0.0543867i −0.679390 0.733777i \(-0.737756\pi\)
0.733777 + 0.679390i \(0.237756\pi\)
\(8\) 2.57394 + 1.17254i 0.910024 + 0.414554i
\(9\) 0 0
\(10\) −0.441393 3.13132i −0.139581 0.990211i
\(11\) −0.749545 + 0.749545i −0.225996 + 0.225996i −0.811018 0.585021i \(-0.801086\pi\)
0.585021 + 0.811018i \(0.301086\pi\)
\(12\) 0 0
\(13\) 3.29132 0.912847 0.456423 0.889763i \(-0.349130\pi\)
0.456423 + 0.889763i \(0.349130\pi\)
\(14\) 0.0342559 + 0.285741i 0.00915528 + 0.0763676i
\(15\) 0 0
\(16\) −3.55303 + 1.83739i −0.888257 + 0.459347i
\(17\) −1.35709 + 1.35709i −0.329142 + 0.329142i −0.852260 0.523118i \(-0.824769\pi\)
0.523118 + 0.852260i \(0.324769\pi\)
\(18\) 0 0
\(19\) −4.25468 + 4.25468i −0.976091 + 0.976091i −0.999721 0.0236300i \(-0.992478\pi\)
0.0236300 + 0.999721i \(0.492478\pi\)
\(20\) 3.86750 + 2.24554i 0.864800 + 0.502117i
\(21\) 0 0
\(22\) −0.178440 1.48843i −0.0380435 0.317335i
\(23\) −0.837388 0.837388i −0.174608 0.174608i 0.614393 0.789000i \(-0.289401\pi\)
−0.789000 + 0.614393i \(0.789401\pi\)
\(24\) 0 0
\(25\) −0.207170 4.99571i −0.0414341 0.999141i
\(26\) −2.87614 + 3.65969i −0.564058 + 0.717724i
\(27\) 0 0
\(28\) −0.347657 0.211607i −0.0657010 0.0399900i
\(29\) −2.77462 2.77462i −0.515234 0.515234i 0.400891 0.916126i \(-0.368701\pi\)
−0.916126 + 0.400891i \(0.868701\pi\)
\(30\) 0 0
\(31\) 6.60915i 1.18704i 0.804820 + 0.593520i \(0.202262\pi\)
−0.804820 + 0.593520i \(0.797738\pi\)
\(32\) 1.06181 5.55631i 0.187703 0.982226i
\(33\) 0 0
\(34\) −0.323074 2.69488i −0.0554067 0.462167i
\(35\) 0.00942893 + 0.454934i 0.00159378 + 0.0768979i
\(36\) 0 0
\(37\) −10.0194 −1.64717 −0.823586 0.567191i \(-0.808030\pi\)
−0.823586 + 0.567191i \(0.808030\pi\)
\(38\) −1.01289 8.44886i −0.164312 1.37059i
\(39\) 0 0
\(40\) −5.87651 + 2.33808i −0.929158 + 0.369683i
\(41\) 1.72608i 0.269569i −0.990875 0.134784i \(-0.956966\pi\)
0.990875 0.134784i \(-0.0430342\pi\)
\(42\) 0 0
\(43\) −4.17171 −0.636180 −0.318090 0.948061i \(-0.603041\pi\)
−0.318090 + 0.948061i \(0.603041\pi\)
\(44\) 1.81095 + 1.10227i 0.273011 + 0.166173i
\(45\) 0 0
\(46\) 1.66287 0.199352i 0.245177 0.0293929i
\(47\) −8.54502 8.54502i −1.24642 1.24642i −0.957290 0.289128i \(-0.906635\pi\)
−0.289128 0.957290i \(-0.593365\pi\)
\(48\) 0 0
\(49\) 6.95859i 0.994084i
\(50\) 5.73588 + 4.13518i 0.811175 + 0.584803i
\(51\) 0 0
\(52\) −1.55595 6.39610i −0.215771 0.886979i
\(53\) 5.05524i 0.694391i 0.937793 + 0.347196i \(0.112866\pi\)
−0.937793 + 0.347196i \(0.887134\pi\)
\(54\) 0 0
\(55\) −0.0491155 2.36976i −0.00662273 0.319538i
\(56\) 0.539094 0.201653i 0.0720395 0.0269470i
\(57\) 0 0
\(58\) 5.50979 0.660538i 0.723471 0.0867329i
\(59\) 3.08237 + 3.08237i 0.401290 + 0.401290i 0.878687 0.477398i \(-0.158420\pi\)
−0.477398 + 0.878687i \(0.658420\pi\)
\(60\) 0 0
\(61\) −5.00346 + 5.00346i −0.640627 + 0.640627i −0.950710 0.310083i \(-0.899643\pi\)
0.310083 + 0.950710i \(0.399643\pi\)
\(62\) −7.34887 5.77546i −0.933307 0.733485i
\(63\) 0 0
\(64\) 5.25031 + 6.03608i 0.656289 + 0.754509i
\(65\) −5.09507 + 5.31074i −0.631966 + 0.658717i
\(66\) 0 0
\(67\) −4.26739 −0.521345 −0.260672 0.965427i \(-0.583944\pi\)
−0.260672 + 0.965427i \(0.583944\pi\)
\(68\) 3.27881 + 1.99571i 0.397614 + 0.242015i
\(69\) 0 0
\(70\) −0.514091 0.387064i −0.0614456 0.0462629i
\(71\) −13.2111 −1.56786 −0.783932 0.620846i \(-0.786789\pi\)
−0.783932 + 0.620846i \(0.786789\pi\)
\(72\) 0 0
\(73\) 11.6889 11.6889i 1.36808 1.36808i 0.504904 0.863175i \(-0.331528\pi\)
0.863175 0.504904i \(-0.168472\pi\)
\(74\) 8.75550 11.1407i 1.01781 1.29509i
\(75\) 0 0
\(76\) 10.2796 + 6.25686i 1.17915 + 0.717711i
\(77\) 0.215710i 0.0245824i
\(78\) 0 0
\(79\) −9.95558 −1.12009 −0.560045 0.828462i \(-0.689216\pi\)
−0.560045 + 0.828462i \(0.689216\pi\)
\(80\) 2.53547 8.57738i 0.283474 0.958980i
\(81\) 0 0
\(82\) 1.91927 + 1.50835i 0.211948 + 0.166570i
\(83\) 10.0134i 1.09912i 0.835455 + 0.549559i \(0.185204\pi\)
−0.835455 + 0.549559i \(0.814796\pi\)
\(84\) 0 0
\(85\) −0.0889259 4.29056i −0.00964537 0.465377i
\(86\) 3.64549 4.63862i 0.393103 0.500195i
\(87\) 0 0
\(88\) −2.80815 + 1.05041i −0.299350 + 0.111974i
\(89\) 5.76005 0.610564 0.305282 0.952262i \(-0.401249\pi\)
0.305282 + 0.952262i \(0.401249\pi\)
\(90\) 0 0
\(91\) 0.473599 0.473599i 0.0496467 0.0496467i
\(92\) −1.23145 + 2.02319i −0.128387 + 0.210932i
\(93\) 0 0
\(94\) 16.9685 2.03426i 1.75017 0.209818i
\(95\) −0.278797 13.4516i −0.0286040 1.38010i
\(96\) 0 0
\(97\) 11.7668 11.7668i 1.19474 1.19474i 0.219021 0.975720i \(-0.429714\pi\)
0.975720 0.219021i \(-0.0702865\pi\)
\(98\) −7.73741 6.08082i −0.781597 0.614256i
\(99\) 0 0
\(100\) −9.61034 + 2.76429i −0.961034 + 0.276429i
\(101\) 1.29314 + 1.29314i 0.128672 + 0.128672i 0.768510 0.639838i \(-0.220998\pi\)
−0.639838 + 0.768510i \(0.720998\pi\)
\(102\) 0 0
\(103\) −11.2892 11.2892i −1.11236 1.11236i −0.992830 0.119532i \(-0.961861\pi\)
−0.119532 0.992830i \(-0.538139\pi\)
\(104\) 8.47164 + 3.85919i 0.830713 + 0.378425i
\(105\) 0 0
\(106\) −5.62104 4.41757i −0.545964 0.429072i
\(107\) 1.39451i 0.134812i 0.997726 + 0.0674060i \(0.0214723\pi\)
−0.997726 + 0.0674060i \(0.978528\pi\)
\(108\) 0 0
\(109\) 4.55325 + 4.55325i 0.436123 + 0.436123i 0.890705 0.454582i \(-0.150211\pi\)
−0.454582 + 0.890705i \(0.650211\pi\)
\(110\) 2.67791 + 2.01622i 0.255329 + 0.192239i
\(111\) 0 0
\(112\) −0.246870 + 0.775647i −0.0233270 + 0.0732917i
\(113\) 11.4501 + 11.4501i 1.07714 + 1.07714i 0.996765 + 0.0803726i \(0.0256110\pi\)
0.0803726 + 0.996765i \(0.474389\pi\)
\(114\) 0 0
\(115\) 2.64749 0.0548716i 0.246879 0.00511680i
\(116\) −4.08031 + 6.70368i −0.378847 + 0.622421i
\(117\) 0 0
\(118\) −6.12090 + 0.733801i −0.563475 + 0.0675519i
\(119\) 0.390552i 0.0358018i
\(120\) 0 0
\(121\) 9.87636i 0.897851i
\(122\) −1.19114 9.93577i −0.107841 0.899542i
\(123\) 0 0
\(124\) 12.8437 3.12443i 1.15340 0.280582i
\(125\) 8.38159 + 7.39925i 0.749672 + 0.661809i
\(126\) 0 0
\(127\) 4.94562 + 4.94562i 0.438853 + 0.438853i 0.891626 0.452773i \(-0.149565\pi\)
−0.452773 + 0.891626i \(0.649565\pi\)
\(128\) −11.2997 + 0.563267i −0.998760 + 0.0497862i
\(129\) 0 0
\(130\) −1.45276 10.3062i −0.127416 0.903910i
\(131\) 12.7313 + 12.7313i 1.11234 + 1.11234i 0.992833 + 0.119509i \(0.0381319\pi\)
0.119509 + 0.992833i \(0.461868\pi\)
\(132\) 0 0
\(133\) 1.22444i 0.106173i
\(134\) 3.72909 4.74501i 0.322145 0.409906i
\(135\) 0 0
\(136\) −5.08429 + 1.90182i −0.435974 + 0.163080i
\(137\) −6.06032 6.06032i −0.517768 0.517768i 0.399127 0.916896i \(-0.369313\pi\)
−0.916896 + 0.399127i \(0.869313\pi\)
\(138\) 0 0
\(139\) −10.3543 10.3543i −0.878239 0.878239i 0.115114 0.993352i \(-0.463277\pi\)
−0.993352 + 0.115114i \(0.963277\pi\)
\(140\) 0.879627 0.233390i 0.0743421 0.0197251i
\(141\) 0 0
\(142\) 11.5446 14.6897i 0.968801 1.23273i
\(143\) −2.46699 + 2.46699i −0.206300 + 0.206300i
\(144\) 0 0
\(145\) 8.77224 0.181813i 0.728495 0.0150987i
\(146\) 2.78270 + 23.2115i 0.230298 + 1.92100i
\(147\) 0 0
\(148\) 4.73658 + 19.4709i 0.389345 + 1.60050i
\(149\) 0.485009 0.485009i 0.0397335 0.0397335i −0.686961 0.726694i \(-0.741056\pi\)
0.726694 + 0.686961i \(0.241056\pi\)
\(150\) 0 0
\(151\) 6.47302 0.526767 0.263383 0.964691i \(-0.415162\pi\)
0.263383 + 0.964691i \(0.415162\pi\)
\(152\) −15.9401 + 5.96251i −1.29291 + 0.483624i
\(153\) 0 0
\(154\) −0.239852 0.188500i −0.0193278 0.0151897i
\(155\) −10.6643 10.2312i −0.856576 0.821790i
\(156\) 0 0
\(157\) 11.7463i 0.937455i 0.883343 + 0.468728i \(0.155287\pi\)
−0.883343 + 0.468728i \(0.844713\pi\)
\(158\) 8.69977 11.0698i 0.692117 0.880669i
\(159\) 0 0
\(160\) 7.32173 + 10.3147i 0.578834 + 0.815445i
\(161\) −0.240990 −0.0189926
\(162\) 0 0
\(163\) 1.87143i 0.146582i 0.997311 + 0.0732908i \(0.0233501\pi\)
−0.997311 + 0.0732908i \(0.976650\pi\)
\(164\) −3.35434 + 0.815994i −0.261930 + 0.0637184i
\(165\) 0 0
\(166\) −11.1342 8.75033i −0.864179 0.679157i
\(167\) −4.79897 + 4.79897i −0.371355 + 0.371355i −0.867971 0.496615i \(-0.834576\pi\)
0.496615 + 0.867971i \(0.334576\pi\)
\(168\) 0 0
\(169\) −2.16724 −0.166711
\(170\) 4.84848 + 3.65046i 0.371861 + 0.279978i
\(171\) 0 0
\(172\) 1.97215 + 8.10699i 0.150375 + 0.618152i
\(173\) −12.8446 −0.976560 −0.488280 0.872687i \(-0.662375\pi\)
−0.488280 + 0.872687i \(0.662375\pi\)
\(174\) 0 0
\(175\) −0.748661 0.689040i −0.0565934 0.0520865i
\(176\) 1.28595 4.04036i 0.0969320 0.304554i
\(177\) 0 0
\(178\) −5.03346 + 6.40473i −0.377274 + 0.480054i
\(179\) −3.47791 + 3.47791i −0.259951 + 0.259951i −0.825034 0.565083i \(-0.808844\pi\)
0.565083 + 0.825034i \(0.308844\pi\)
\(180\) 0 0
\(181\) 16.3185 + 16.3185i 1.21295 + 1.21295i 0.970053 + 0.242893i \(0.0780965\pi\)
0.242893 + 0.970053i \(0.421903\pi\)
\(182\) 0.112747 + 0.940464i 0.00835737 + 0.0697119i
\(183\) 0 0
\(184\) −1.17352 3.13725i −0.0865128 0.231281i
\(185\) 15.5103 16.1669i 1.14034 1.18861i
\(186\) 0 0
\(187\) 2.03439i 0.148770i
\(188\) −12.5661 + 20.6453i −0.916480 + 1.50572i
\(189\) 0 0
\(190\) 15.2008 + 11.4448i 1.10278 + 0.830292i
\(191\) 21.5483i 1.55918i 0.626289 + 0.779591i \(0.284573\pi\)
−0.626289 + 0.779591i \(0.715427\pi\)
\(192\) 0 0
\(193\) 11.3161 + 11.3161i 0.814552 + 0.814552i 0.985313 0.170760i \(-0.0546224\pi\)
−0.170760 + 0.985313i \(0.554622\pi\)
\(194\) 2.80126 + 23.3664i 0.201119 + 1.67761i
\(195\) 0 0
\(196\) 13.5228 3.28963i 0.965915 0.234973i
\(197\) 23.3109 1.66083 0.830417 0.557142i \(-0.188102\pi\)
0.830417 + 0.557142i \(0.188102\pi\)
\(198\) 0 0
\(199\) 2.14992i 0.152404i −0.997092 0.0762018i \(-0.975721\pi\)
0.997092 0.0762018i \(-0.0242793\pi\)
\(200\) 5.32441 13.1016i 0.376492 0.926420i
\(201\) 0 0
\(202\) −2.56789 + 0.307850i −0.180676 + 0.0216603i
\(203\) −0.798501 −0.0560438
\(204\) 0 0
\(205\) 2.78514 + 2.67204i 0.194523 + 0.186623i
\(206\) 22.4180 2.68756i 1.56193 0.187251i
\(207\) 0 0
\(208\) −11.6941 + 6.04742i −0.810842 + 0.419313i
\(209\) 6.37815i 0.441186i
\(210\) 0 0
\(211\) 6.27270 + 6.27270i 0.431830 + 0.431830i 0.889251 0.457420i \(-0.151226\pi\)
−0.457420 + 0.889251i \(0.651226\pi\)
\(212\) 9.82398 2.38983i 0.674714 0.164134i
\(213\) 0 0
\(214\) −1.55058 1.21860i −0.105996 0.0833019i
\(215\) 6.45796 6.73132i 0.440429 0.459072i
\(216\) 0 0
\(217\) 0.951015 + 0.951015i 0.0645591 + 0.0645591i
\(218\) −9.04176 + 1.08397i −0.612385 + 0.0734155i
\(219\) 0 0
\(220\) −4.58200 + 1.21574i −0.308918 + 0.0819649i
\(221\) −4.46660 + 4.46660i −0.300456 + 0.300456i
\(222\) 0 0
\(223\) 5.00009 5.00009i 0.334831 0.334831i −0.519587 0.854418i \(-0.673914\pi\)
0.854418 + 0.519587i \(0.173914\pi\)
\(224\) −0.646730 0.952305i −0.0432115 0.0636286i
\(225\) 0 0
\(226\) −22.7374 + 2.72587i −1.51247 + 0.181322i
\(227\) 22.5630 1.49756 0.748778 0.662821i \(-0.230641\pi\)
0.748778 + 0.662821i \(0.230641\pi\)
\(228\) 0 0
\(229\) 6.83720 6.83720i 0.451815 0.451815i −0.444142 0.895957i \(-0.646491\pi\)
0.895957 + 0.444142i \(0.146491\pi\)
\(230\) −2.25251 + 2.99175i −0.148526 + 0.197270i
\(231\) 0 0
\(232\) −3.88836 10.3951i −0.255283 0.682469i
\(233\) 3.10894 3.10894i 0.203673 0.203673i −0.597899 0.801572i \(-0.703997\pi\)
0.801572 + 0.597899i \(0.203997\pi\)
\(234\) 0 0
\(235\) 27.0159 0.559930i 1.76232 0.0365258i
\(236\) 4.53287 7.44721i 0.295065 0.484772i
\(237\) 0 0
\(238\) −0.434264 0.341287i −0.0281491 0.0221224i
\(239\) 11.0671 0.715873 0.357937 0.933746i \(-0.383480\pi\)
0.357937 + 0.933746i \(0.383480\pi\)
\(240\) 0 0
\(241\) −23.4743 −1.51211 −0.756056 0.654507i \(-0.772876\pi\)
−0.756056 + 0.654507i \(0.772876\pi\)
\(242\) −10.9818 8.63054i −0.705934 0.554792i
\(243\) 0 0
\(244\) 12.0887 + 7.35799i 0.773899 + 0.471047i
\(245\) −11.2281 10.7721i −0.717338 0.688207i
\(246\) 0 0
\(247\) −14.0035 + 14.0035i −0.891021 + 0.891021i
\(248\) −7.74948 + 17.0116i −0.492092 + 1.08023i
\(249\) 0 0
\(250\) −15.5517 + 2.85379i −0.983577 + 0.180489i
\(251\) 1.76187 1.76187i 0.111209 0.111209i −0.649313 0.760521i \(-0.724943\pi\)
0.760521 + 0.649313i \(0.224943\pi\)
\(252\) 0 0
\(253\) 1.25532 0.0789213
\(254\) −9.82092 + 1.17738i −0.616219 + 0.0738751i
\(255\) 0 0
\(256\) 9.24801 13.0566i 0.578001 0.816036i
\(257\) 4.05693 4.05693i 0.253064 0.253064i −0.569162 0.822226i \(-0.692732\pi\)
0.822226 + 0.569162i \(0.192732\pi\)
\(258\) 0 0
\(259\) −1.44172 + 1.44172i −0.0895842 + 0.0895842i
\(260\) 12.7292 + 7.39077i 0.789429 + 0.458356i
\(261\) 0 0
\(262\) −25.2816 + 3.03087i −1.56190 + 0.187248i
\(263\) −22.2576 22.2576i −1.37246 1.37246i −0.856784 0.515676i \(-0.827541\pi\)
−0.515676 0.856784i \(-0.672459\pi\)
\(264\) 0 0
\(265\) −8.15695 7.82570i −0.501078 0.480729i
\(266\) −1.36149 1.06999i −0.0834781 0.0656053i
\(267\) 0 0
\(268\) 2.01738 + 8.29293i 0.123231 + 0.506571i
\(269\) −11.9600 11.9600i −0.729217 0.729217i 0.241247 0.970464i \(-0.422444\pi\)
−0.970464 + 0.241247i \(0.922444\pi\)
\(270\) 0 0
\(271\) 15.7162i 0.954691i −0.878716 0.477346i \(-0.841599\pi\)
0.878716 0.477346i \(-0.158401\pi\)
\(272\) 2.32827 7.31526i 0.141172 0.443553i
\(273\) 0 0
\(274\) 12.0345 1.44275i 0.727029 0.0871595i
\(275\) 3.89979 + 3.58922i 0.235166 + 0.216438i
\(276\) 0 0
\(277\) 4.59363 0.276004 0.138002 0.990432i \(-0.455932\pi\)
0.138002 + 0.990432i \(0.455932\pi\)
\(278\) 20.5613 2.46498i 1.23319 0.147840i
\(279\) 0 0
\(280\) −0.509157 + 1.18203i −0.0304280 + 0.0706397i
\(281\) 20.5117i 1.22363i −0.791002 0.611814i \(-0.790440\pi\)
0.791002 0.611814i \(-0.209560\pi\)
\(282\) 0 0
\(283\) −28.8990 −1.71787 −0.858933 0.512088i \(-0.828872\pi\)
−0.858933 + 0.512088i \(0.828872\pi\)
\(284\) 6.24544 + 25.6734i 0.370599 + 1.52344i
\(285\) 0 0
\(286\) −0.587302 4.89890i −0.0347279 0.289678i
\(287\) −0.248372 0.248372i −0.0146610 0.0146610i
\(288\) 0 0
\(289\) 13.3166i 0.783332i
\(290\) −7.46353 + 9.91293i −0.438274 + 0.582107i
\(291\) 0 0
\(292\) −28.2411 17.1895i −1.65269 1.00594i
\(293\) 8.86723i 0.518029i −0.965873 0.259014i \(-0.916602\pi\)
0.965873 0.259014i \(-0.0833977\pi\)
\(294\) 0 0
\(295\) −9.74521 + 0.201978i −0.567388 + 0.0117596i
\(296\) −25.7892 11.7481i −1.49897 0.682843i
\(297\) 0 0
\(298\) 0.115463 + 0.963122i 0.00668861 + 0.0557921i
\(299\) −2.75611 2.75611i −0.159390 0.159390i
\(300\) 0 0
\(301\) −0.600283 + 0.600283i −0.0345997 + 0.0345997i
\(302\) −5.65650 + 7.19749i −0.325495 + 0.414169i
\(303\) 0 0
\(304\) 7.29950 22.9345i 0.418655 1.31538i
\(305\) −0.327862 15.8189i −0.0187733 0.905789i
\(306\) 0 0
\(307\) 14.1518 0.807684 0.403842 0.914829i \(-0.367675\pi\)
0.403842 + 0.914829i \(0.367675\pi\)
\(308\) 0.419194 0.101975i 0.0238858 0.00581058i
\(309\) 0 0
\(310\) 20.6954 2.91723i 1.17542 0.165688i
\(311\) −7.15165 −0.405533 −0.202766 0.979227i \(-0.564993\pi\)
−0.202766 + 0.979227i \(0.564993\pi\)
\(312\) 0 0
\(313\) 5.98016 5.98016i 0.338019 0.338019i −0.517602 0.855621i \(-0.673175\pi\)
0.855621 + 0.517602i \(0.173175\pi\)
\(314\) −13.0610 10.2646i −0.737072 0.579264i
\(315\) 0 0
\(316\) 4.70644 + 19.3469i 0.264758 + 1.08835i
\(317\) 7.76996i 0.436404i 0.975904 + 0.218202i \(0.0700192\pi\)
−0.975904 + 0.218202i \(0.929981\pi\)
\(318\) 0 0
\(319\) 4.15941 0.232882
\(320\) −17.8673 0.872350i −0.998810 0.0487659i
\(321\) 0 0
\(322\) 0.210591 0.267962i 0.0117358 0.0149329i
\(323\) 11.5479i 0.642544i
\(324\) 0 0
\(325\) −0.681863 16.4424i −0.0378229 0.912063i
\(326\) −2.08088 1.63536i −0.115249 0.0905744i
\(327\) 0 0
\(328\) 2.02390 4.44283i 0.111751 0.245314i
\(329\) −2.45915 −0.135577
\(330\) 0 0
\(331\) −0.751395 + 0.751395i −0.0413004 + 0.0413004i −0.727455 0.686155i \(-0.759297\pi\)
0.686155 + 0.727455i \(0.259297\pi\)
\(332\) 19.4594 4.73379i 1.06797 0.259800i
\(333\) 0 0
\(334\) −1.14246 9.52970i −0.0625127 0.521442i
\(335\) 6.60607 6.88570i 0.360928 0.376206i
\(336\) 0 0
\(337\) −0.379414 + 0.379414i −0.0206680 + 0.0206680i −0.717365 0.696697i \(-0.754652\pi\)
0.696697 + 0.717365i \(0.254652\pi\)
\(338\) 1.89386 2.40981i 0.103013 0.131076i
\(339\) 0 0
\(340\) −8.29592 + 2.20115i −0.449909 + 0.119374i
\(341\) −4.95386 4.95386i −0.268266 0.268266i
\(342\) 0 0
\(343\) 2.00855 + 2.00855i 0.108452 + 0.108452i
\(344\) −10.7377 4.89149i −0.578939 0.263731i
\(345\) 0 0
\(346\) 11.2244 14.2822i 0.603427 0.767818i
\(347\) 16.7455i 0.898947i 0.893294 + 0.449473i \(0.148388\pi\)
−0.893294 + 0.449473i \(0.851612\pi\)
\(348\) 0 0
\(349\) −21.0019 21.0019i −1.12421 1.12421i −0.991102 0.133104i \(-0.957506\pi\)
−0.133104 0.991102i \(-0.542494\pi\)
\(350\) 1.42038 0.230330i 0.0759226 0.0123116i
\(351\) 0 0
\(352\) 3.36883 + 4.96058i 0.179559 + 0.264400i
\(353\) 9.02933 + 9.02933i 0.480583 + 0.480583i 0.905318 0.424735i \(-0.139633\pi\)
−0.424735 + 0.905318i \(0.639633\pi\)
\(354\) 0 0
\(355\) 20.4512 21.3169i 1.08544 1.13138i
\(356\) −2.72302 11.1936i −0.144320 0.593262i
\(357\) 0 0
\(358\) −0.827965 6.90636i −0.0437593 0.365012i
\(359\) 12.2651i 0.647326i 0.946172 + 0.323663i \(0.104914\pi\)
−0.946172 + 0.323663i \(0.895086\pi\)
\(360\) 0 0
\(361\) 17.2046i 0.905506i
\(362\) −32.4050 + 3.88486i −1.70317 + 0.204184i
\(363\) 0 0
\(364\) −1.14425 0.696467i −0.0599749 0.0365048i
\(365\) 0.765938 + 36.9555i 0.0400910 + 1.93434i
\(366\) 0 0
\(367\) 1.25485 + 1.25485i 0.0655025 + 0.0655025i 0.739099 0.673597i \(-0.235251\pi\)
−0.673597 + 0.739099i \(0.735251\pi\)
\(368\) 4.51387 + 1.43666i 0.235302 + 0.0748909i
\(369\) 0 0
\(370\) 4.42247 + 31.3738i 0.229913 + 1.63105i
\(371\) 0.727417 + 0.727417i 0.0377656 + 0.0377656i
\(372\) 0 0
\(373\) 8.25732i 0.427548i 0.976883 + 0.213774i \(0.0685756\pi\)
−0.976883 + 0.213774i \(0.931424\pi\)
\(374\) 2.26209 + 1.77777i 0.116970 + 0.0919264i
\(375\) 0 0
\(376\) −11.9750 32.0137i −0.617563 1.65098i
\(377\) −9.13216 9.13216i −0.470330 0.470330i
\(378\) 0 0
\(379\) −1.03027 1.03027i −0.0529214 0.0529214i 0.680151 0.733072i \(-0.261914\pi\)
−0.733072 + 0.680151i \(0.761914\pi\)
\(380\) −26.0090 + 6.90094i −1.33423 + 0.354011i
\(381\) 0 0
\(382\) −23.9601 18.8302i −1.22590 0.963436i
\(383\) 12.3374 12.3374i 0.630413 0.630413i −0.317759 0.948172i \(-0.602930\pi\)
0.948172 + 0.317759i \(0.102930\pi\)
\(384\) 0 0
\(385\) −0.348061 0.333926i −0.0177388 0.0170184i
\(386\) −22.4713 + 2.69396i −1.14376 + 0.137119i
\(387\) 0 0
\(388\) −28.4295 17.3041i −1.44329 0.878483i
\(389\) −12.8354 + 12.8354i −0.650781 + 0.650781i −0.953181 0.302400i \(-0.902212\pi\)
0.302400 + 0.953181i \(0.402212\pi\)
\(390\) 0 0
\(391\) 2.27282 0.114941
\(392\) −8.15920 + 17.9110i −0.412102 + 0.904641i
\(393\) 0 0
\(394\) −20.3704 + 25.9199i −1.02625 + 1.30583i
\(395\) 15.4116 16.0640i 0.775442 0.808266i
\(396\) 0 0
\(397\) 14.3934i 0.722383i −0.932492 0.361191i \(-0.882370\pi\)
0.932492 0.361191i \(-0.117630\pi\)
\(398\) 2.39054 + 1.87872i 0.119827 + 0.0941718i
\(399\) 0 0
\(400\) 9.91513 + 17.3692i 0.495757 + 0.868461i
\(401\) 37.4272 1.86902 0.934512 0.355932i \(-0.115836\pi\)
0.934512 + 0.355932i \(0.115836\pi\)
\(402\) 0 0
\(403\) 21.7528i 1.08358i
\(404\) 1.90167 3.12432i 0.0946116 0.155440i
\(405\) 0 0
\(406\) 0.697777 0.887871i 0.0346301 0.0440643i
\(407\) 7.50996 7.50996i 0.372255 0.372255i
\(408\) 0 0
\(409\) −8.19166 −0.405052 −0.202526 0.979277i \(-0.564915\pi\)
−0.202526 + 0.979277i \(0.564915\pi\)
\(410\) −5.40492 + 0.761881i −0.266930 + 0.0376266i
\(411\) 0 0
\(412\) −16.6018 + 27.2756i −0.817910 + 1.34377i
\(413\) 0.887066 0.0436497
\(414\) 0 0
\(415\) −16.1573 15.5012i −0.793131 0.760922i
\(416\) 3.49475 18.2876i 0.171344 0.896621i
\(417\) 0 0
\(418\) 7.09201 + 5.57360i 0.346881 + 0.272614i
\(419\) −22.2183 + 22.2183i −1.08544 + 1.08544i −0.0894455 + 0.995992i \(0.528509\pi\)
−0.995992 + 0.0894455i \(0.971491\pi\)
\(420\) 0 0
\(421\) −2.75098 2.75098i −0.134074 0.134074i 0.636885 0.770959i \(-0.280223\pi\)
−0.770959 + 0.636885i \(0.780223\pi\)
\(422\) −12.4562 + 1.49331i −0.606359 + 0.0726930i
\(423\) 0 0
\(424\) −5.92746 + 13.0119i −0.287863 + 0.631913i
\(425\) 7.06075 + 6.49845i 0.342497 + 0.315221i
\(426\) 0 0
\(427\) 1.43993i 0.0696832i
\(428\) 2.70998 0.659244i 0.130992 0.0318658i
\(429\) 0 0
\(430\) 1.84136 + 13.0630i 0.0887985 + 0.629952i
\(431\) 5.32770i 0.256626i 0.991734 + 0.128313i \(0.0409563\pi\)
−0.991734 + 0.128313i \(0.959044\pi\)
\(432\) 0 0
\(433\) −3.38866 3.38866i −0.162849 0.162849i 0.620979 0.783827i \(-0.286735\pi\)
−0.783827 + 0.620979i \(0.786735\pi\)
\(434\) −1.88851 + 0.226403i −0.0906513 + 0.0108677i
\(435\) 0 0
\(436\) 6.69593 11.0010i 0.320677 0.526851i
\(437\) 7.12564 0.340866
\(438\) 0 0
\(439\) 5.99801i 0.286269i −0.989703 0.143135i \(-0.954282\pi\)
0.989703 0.143135i \(-0.0457182\pi\)
\(440\) 2.65221 6.15721i 0.126439 0.293533i
\(441\) 0 0
\(442\) −1.06334 8.86968i −0.0505778 0.421888i
\(443\) 13.3394 0.633773 0.316887 0.948463i \(-0.397363\pi\)
0.316887 + 0.948463i \(0.397363\pi\)
\(444\) 0 0
\(445\) −8.91676 + 9.29420i −0.422695 + 0.440587i
\(446\) 1.19034 + 9.92908i 0.0563643 + 0.470156i
\(447\) 0 0
\(448\) 1.62404 + 0.113066i 0.0767287 + 0.00534188i
\(449\) 29.7201i 1.40258i −0.712877 0.701289i \(-0.752608\pi\)
0.712877 0.701289i \(-0.247392\pi\)
\(450\) 0 0
\(451\) 1.29378 + 1.29378i 0.0609216 + 0.0609216i
\(452\) 16.8384 27.6643i 0.792010 1.30122i
\(453\) 0 0
\(454\) −19.7168 + 25.0883i −0.925356 + 1.17745i
\(455\) 0.0310336 + 1.49733i 0.00145488 + 0.0701960i
\(456\) 0 0
\(457\) 13.8443 + 13.8443i 0.647611 + 0.647611i 0.952415 0.304804i \(-0.0985910\pi\)
−0.304804 + 0.952415i \(0.598591\pi\)
\(458\) 1.62769 + 13.5772i 0.0760571 + 0.634420i
\(459\) 0 0
\(460\) −1.35821 5.11899i −0.0633271 0.238674i
\(461\) −23.8766 + 23.8766i −1.11205 + 1.11205i −0.119172 + 0.992874i \(0.538024\pi\)
−0.992874 + 0.119172i \(0.961976\pi\)
\(462\) 0 0
\(463\) 10.5750 10.5750i 0.491463 0.491463i −0.417304 0.908767i \(-0.637025\pi\)
0.908767 + 0.417304i \(0.137025\pi\)
\(464\) 14.9564 + 4.76025i 0.694332 + 0.220989i
\(465\) 0 0
\(466\) 0.740126 + 6.17366i 0.0342857 + 0.285989i
\(467\) −30.0161 −1.38898 −0.694491 0.719502i \(-0.744370\pi\)
−0.694491 + 0.719502i \(0.744370\pi\)
\(468\) 0 0
\(469\) −0.614050 + 0.614050i −0.0283542 + 0.0283542i
\(470\) −22.9855 + 30.5289i −1.06024 + 1.40819i
\(471\) 0 0
\(472\) 4.31963 + 11.5480i 0.198827 + 0.531540i
\(473\) 3.12689 3.12689i 0.143774 0.143774i
\(474\) 0 0
\(475\) 22.1366 + 20.3737i 1.01570 + 0.934809i
\(476\) 0.758970 0.184631i 0.0347873 0.00846254i
\(477\) 0 0
\(478\) −9.67111 + 12.3058i −0.442346 + 0.562854i
\(479\) 21.9152 1.00133 0.500665 0.865641i \(-0.333089\pi\)
0.500665 + 0.865641i \(0.333089\pi\)
\(480\) 0 0
\(481\) −32.9769 −1.50362
\(482\) 20.5132 26.1016i 0.934351 1.18890i
\(483\) 0 0
\(484\) 19.1930 4.66899i 0.872409 0.212227i
\(485\) 0.771047 + 37.2020i 0.0350114 + 1.68926i
\(486\) 0 0
\(487\) −5.66360 + 5.66360i −0.256642 + 0.256642i −0.823687 0.567045i \(-0.808087\pi\)
0.567045 + 0.823687i \(0.308087\pi\)
\(488\) −18.7453 + 7.01185i −0.848561 + 0.317411i
\(489\) 0 0
\(490\) 21.7896 3.07147i 0.984353 0.138755i
\(491\) 25.4744 25.4744i 1.14964 1.14964i 0.163018 0.986623i \(-0.447877\pi\)
0.986623 0.163018i \(-0.0521230\pi\)
\(492\) 0 0
\(493\) 7.53080 0.339170
\(494\) −3.33373 27.8079i −0.149992 1.25114i
\(495\) 0 0
\(496\) −12.1436 23.4825i −0.545263 1.05440i
\(497\) −1.90099 + 1.90099i −0.0852709 + 0.0852709i
\(498\) 0 0
\(499\) −18.8209 + 18.8209i −0.842537 + 0.842537i −0.989188 0.146651i \(-0.953151\pi\)
0.146651 + 0.989188i \(0.453151\pi\)
\(500\) 10.4168 19.7861i 0.465854 0.884862i
\(501\) 0 0
\(502\) 0.419439 + 3.49870i 0.0187205 + 0.156154i
\(503\) −7.85721 7.85721i −0.350336 0.350336i 0.509899 0.860234i \(-0.329683\pi\)
−0.860234 + 0.509899i \(0.829683\pi\)
\(504\) 0 0
\(505\) −4.08839 + 0.0847357i −0.181931 + 0.00377069i
\(506\) −1.09697 + 1.39582i −0.0487664 + 0.0620517i
\(507\) 0 0
\(508\) 7.27294 11.9490i 0.322685 0.530149i
\(509\) −10.1248 10.1248i −0.448776 0.448776i 0.446171 0.894948i \(-0.352787\pi\)
−0.894948 + 0.446171i \(0.852787\pi\)
\(510\) 0 0
\(511\) 3.36391i 0.148811i
\(512\) 6.43646 + 21.6927i 0.284454 + 0.958690i
\(513\) 0 0
\(514\) 0.965809 + 8.05617i 0.0426000 + 0.355342i
\(515\) 35.6920 0.739751i 1.57278 0.0325973i
\(516\) 0 0
\(517\) 12.8097 0.563372
\(518\) −0.343222 2.86294i −0.0150803 0.125791i
\(519\) 0 0
\(520\) −19.3414 + 7.69536i −0.848179 + 0.337464i
\(521\) 37.3503i 1.63634i 0.574973 + 0.818172i \(0.305013\pi\)
−0.574973 + 0.818172i \(0.694987\pi\)
\(522\) 0 0
\(523\) 8.27258 0.361735 0.180867 0.983507i \(-0.442110\pi\)
0.180867 + 0.983507i \(0.442110\pi\)
\(524\) 18.7225 30.7598i 0.817895 1.34375i
\(525\) 0 0
\(526\) 44.1986 5.29873i 1.92715 0.231035i
\(527\) −8.96919 8.96919i −0.390704 0.390704i
\(528\) 0 0
\(529\) 21.5976i 0.939024i
\(530\) 15.8296 2.23135i 0.687594 0.0969236i
\(531\) 0 0
\(532\) 2.37949 0.578847i 0.103164 0.0250962i
\(533\) 5.68108i 0.246075i
\(534\) 0 0
\(535\) −2.25012 2.15875i −0.0972814 0.0933308i
\(536\) −10.9840 5.00367i −0.474436 0.216126i
\(537\) 0 0
\(538\) 23.7500 2.84726i 1.02394 0.122754i
\(539\) −5.21578 5.21578i −0.224659 0.224659i
\(540\) 0 0
\(541\) 11.1960 11.1960i 0.481352 0.481352i −0.424211 0.905563i \(-0.639449\pi\)
0.905563 + 0.424211i \(0.139449\pi\)
\(542\) 17.4752 + 13.7337i 0.750624 + 0.589914i
\(543\) 0 0
\(544\) 6.09942 + 8.98135i 0.261511 + 0.385072i
\(545\) −14.3956 + 0.298361i −0.616638 + 0.0127804i
\(546\) 0 0
\(547\) 26.6966 1.14147 0.570733 0.821136i \(-0.306659\pi\)
0.570733 + 0.821136i \(0.306659\pi\)
\(548\) −8.91220 + 14.6422i −0.380710 + 0.625482i
\(549\) 0 0
\(550\) −7.39880 + 1.19979i −0.315486 + 0.0511593i
\(551\) 23.6103 1.00583
\(552\) 0 0
\(553\) −1.43255 + 1.43255i −0.0609180 + 0.0609180i
\(554\) −4.01418 + 5.10776i −0.170546 + 0.217008i
\(555\) 0 0
\(556\) −15.2268 + 25.0167i −0.645761 + 1.06094i
\(557\) 0.715510i 0.0303171i −0.999885 0.0151586i \(-0.995175\pi\)
0.999885 0.0151586i \(-0.00482531\pi\)
\(558\) 0 0
\(559\) −13.7304 −0.580735
\(560\) −0.869392 1.59907i −0.0367385 0.0675730i
\(561\) 0 0
\(562\) 22.8075 + 17.9244i 0.962075 + 0.756093i
\(563\) 16.6892i 0.703364i −0.936119 0.351682i \(-0.885610\pi\)
0.936119 0.351682i \(-0.114390\pi\)
\(564\) 0 0
\(565\) −36.2007 + 0.750294i −1.52298 + 0.0315651i
\(566\) 25.2536 32.1334i 1.06149 1.35067i
\(567\) 0 0
\(568\) −34.0044 15.4905i −1.42679 0.649965i
\(569\) −23.0249 −0.965253 −0.482626 0.875826i \(-0.660317\pi\)
−0.482626 + 0.875826i \(0.660317\pi\)
\(570\) 0 0
\(571\) −7.65518 + 7.65518i −0.320359 + 0.320359i −0.848905 0.528546i \(-0.822738\pi\)
0.528546 + 0.848905i \(0.322738\pi\)
\(572\) 5.96041 + 3.62791i 0.249217 + 0.151691i
\(573\) 0 0
\(574\) 0.493213 0.0591286i 0.0205863 0.00246798i
\(575\) −4.00986 + 4.35683i −0.167223 + 0.181692i
\(576\) 0 0
\(577\) 22.0343 22.0343i 0.917298 0.917298i −0.0795337 0.996832i \(-0.525343\pi\)
0.996832 + 0.0795337i \(0.0253431\pi\)
\(578\) −14.8071 11.6369i −0.615893 0.484029i
\(579\) 0 0
\(580\) −4.50034 16.9614i −0.186866 0.704283i
\(581\) 1.44087 + 1.44087i 0.0597774 + 0.0597774i
\(582\) 0 0
\(583\) −3.78913 3.78913i −0.156930 0.156930i
\(584\) 43.7921 16.3808i 1.81213 0.677842i
\(585\) 0 0
\(586\) 9.85967 + 7.74870i 0.407299 + 0.320096i
\(587\) 22.5696i 0.931547i 0.884904 + 0.465773i \(0.154224\pi\)
−0.884904 + 0.465773i \(0.845776\pi\)
\(588\) 0 0
\(589\) −28.1198 28.1198i −1.15866 1.15866i
\(590\) 8.29134 11.0124i 0.341349 0.453374i
\(591\) 0 0
\(592\) 35.5990 18.4094i 1.46311 0.756624i
\(593\) 26.4172 + 26.4172i 1.08482 + 1.08482i 0.996052 + 0.0887706i \(0.0282938\pi\)
0.0887706 + 0.996052i \(0.471706\pi\)
\(594\) 0 0
\(595\) −0.630180 0.604589i −0.0258349 0.0247857i
\(596\) −1.17182 0.713246i −0.0479994 0.0292157i
\(597\) 0 0
\(598\) 5.47303 0.656131i 0.223809 0.0268312i
\(599\) 17.4693i 0.713775i 0.934147 + 0.356888i \(0.116162\pi\)
−0.934147 + 0.356888i \(0.883838\pi\)
\(600\) 0 0
\(601\) 25.8843i 1.05584i 0.849294 + 0.527921i \(0.177028\pi\)
−0.849294 + 0.527921i \(0.822972\pi\)
\(602\) −0.142906 1.19203i −0.00582441 0.0485835i
\(603\) 0 0
\(604\) −3.06008 12.5792i −0.124513 0.511839i
\(605\) −15.9361 15.2890i −0.647896 0.621585i
\(606\) 0 0
\(607\) 22.7204 + 22.7204i 0.922193 + 0.922193i 0.997184 0.0749912i \(-0.0238929\pi\)
−0.0749912 + 0.997184i \(0.523893\pi\)
\(608\) 19.1227 + 28.1580i 0.775526 + 1.14196i
\(609\) 0 0
\(610\) 17.8759 + 13.4589i 0.723775 + 0.544937i
\(611\) −28.1243 28.1243i −1.13779 1.13779i
\(612\) 0 0
\(613\) 0.840532i 0.0339488i −0.999856 0.0169744i \(-0.994597\pi\)
0.999856 0.0169744i \(-0.00540337\pi\)
\(614\) −12.3666 + 15.7357i −0.499077 + 0.635040i
\(615\) 0 0
\(616\) −0.252927 + 0.555223i −0.0101907 + 0.0223706i
\(617\) 7.18912 + 7.18912i 0.289423 + 0.289423i 0.836852 0.547429i \(-0.184393\pi\)
−0.547429 + 0.836852i \(0.684393\pi\)
\(618\) 0 0
\(619\) 31.9741 + 31.9741i 1.28515 + 1.28515i 0.937700 + 0.347447i \(0.112951\pi\)
0.347447 + 0.937700i \(0.387049\pi\)
\(620\) −14.8411 + 25.5609i −0.596033 + 1.02655i
\(621\) 0 0
\(622\) 6.24953 7.95208i 0.250583 0.318849i
\(623\) 0.828834 0.828834i 0.0332065 0.0332065i
\(624\) 0 0
\(625\) −24.9142 + 2.06992i −0.996566 + 0.0827970i
\(626\) 1.42366 + 11.8753i 0.0569010 + 0.474632i
\(627\) 0 0
\(628\) 22.8269 5.55298i 0.910891 0.221588i
\(629\) 13.5971 13.5971i 0.542153 0.542153i
\(630\) 0 0
\(631\) 28.2004 1.12264 0.561320 0.827599i \(-0.310294\pi\)
0.561320 + 0.827599i \(0.310294\pi\)
\(632\) −25.6251 11.6733i −1.01931 0.464339i
\(633\) 0 0
\(634\) −8.63959 6.78984i −0.343122 0.269659i
\(635\) −15.6361 + 0.324072i −0.620498 + 0.0128604i
\(636\) 0 0
\(637\) 22.9029i 0.907446i
\(638\) −3.63473 + 4.62494i −0.143900 + 0.183103i
\(639\) 0 0
\(640\) 16.5834 19.1047i 0.655518 0.755180i
\(641\) −36.6103 −1.44602 −0.723011 0.690837i \(-0.757242\pi\)
−0.723011 + 0.690837i \(0.757242\pi\)
\(642\) 0 0
\(643\) 13.4647i 0.530996i 0.964111 + 0.265498i \(0.0855364\pi\)
−0.964111 + 0.265498i \(0.914464\pi\)
\(644\) 0.113926 + 0.468321i 0.00448932 + 0.0184544i
\(645\) 0 0
\(646\) 12.8404 + 10.0913i 0.505199 + 0.397035i
\(647\) −23.4382 + 23.4382i −0.921451 + 0.921451i −0.997132 0.0756812i \(-0.975887\pi\)
0.0756812 + 0.997132i \(0.475887\pi\)
\(648\) 0 0
\(649\) −4.62075 −0.181380
\(650\) 18.8786 + 13.6102i 0.740479 + 0.533835i
\(651\) 0 0
\(652\) 3.63680 0.884706i 0.142428 0.0346477i
\(653\) −15.0338 −0.588318 −0.294159 0.955756i \(-0.595040\pi\)
−0.294159 + 0.955756i \(0.595040\pi\)
\(654\) 0 0
\(655\) −40.2514 + 0.834247i −1.57275 + 0.0325967i
\(656\) 3.17148 + 6.13282i 0.123826 + 0.239446i
\(657\) 0 0
\(658\) 2.14895 2.73438i 0.0837746 0.106597i
\(659\) −12.8233 + 12.8233i −0.499524 + 0.499524i −0.911290 0.411766i \(-0.864912\pi\)
0.411766 + 0.911290i \(0.364912\pi\)
\(660\) 0 0
\(661\) 22.6599 + 22.6599i 0.881369 + 0.881369i 0.993674 0.112305i \(-0.0358232\pi\)
−0.112305 + 0.993674i \(0.535823\pi\)
\(662\) −0.178880 1.49211i −0.00695238 0.0579923i
\(663\) 0 0
\(664\) −11.7411 + 25.7740i −0.455644 + 1.00022i
\(665\) −1.97572 1.89548i −0.0766150 0.0735036i
\(666\) 0 0
\(667\) 4.64687i 0.179928i
\(668\) 11.5946 + 7.05727i 0.448610 + 0.273054i
\(669\) 0 0
\(670\) 1.88360 + 13.3626i 0.0727697 + 0.516241i
\(671\) 7.50063i 0.289559i
\(672\) 0 0
\(673\) 18.5901 + 18.5901i 0.716595 + 0.716595i 0.967906 0.251311i \(-0.0808617\pi\)
−0.251311 + 0.967906i \(0.580862\pi\)
\(674\) −0.0903249 0.753433i −0.00347918 0.0290211i
\(675\) 0 0
\(676\) 1.02455 + 4.21166i 0.0394058 + 0.161987i
\(677\) −1.52496 −0.0586089 −0.0293044 0.999571i \(-0.509329\pi\)
−0.0293044 + 0.999571i \(0.509329\pi\)
\(678\) 0 0
\(679\) 3.38635i 0.129956i
\(680\) 4.80195 11.1479i 0.184146 0.427503i
\(681\) 0 0
\(682\) 9.83728 1.17934i 0.376689 0.0451591i
\(683\) −3.77382 −0.144401 −0.0722006 0.997390i \(-0.523002\pi\)
−0.0722006 + 0.997390i \(0.523002\pi\)
\(684\) 0 0
\(685\) 19.1603 0.397115i 0.732078 0.0151730i
\(686\) −3.98854 + 0.478164i −0.152283 + 0.0182564i
\(687\) 0 0
\(688\) 14.8222 7.66505i 0.565091 0.292227i
\(689\) 16.6384i 0.633873i
\(690\) 0 0
\(691\) −15.9624 15.9624i −0.607239 0.607239i 0.334984 0.942224i \(-0.391269\pi\)
−0.942224 + 0.334984i \(0.891269\pi\)
\(692\) 6.07222 + 24.9613i 0.230831 + 0.948887i
\(693\) 0 0
\(694\) −18.6197 14.6332i −0.706795 0.555469i
\(695\) 32.7361 0.678486i 1.24175 0.0257364i
\(696\) 0 0
\(697\) 2.34244 + 2.34244i 0.0887263 + 0.0887263i
\(698\) 41.7052 4.99980i 1.57856 0.189245i
\(699\) 0 0
\(700\) −0.985104 + 1.78063i −0.0372334 + 0.0673015i
\(701\) 20.1411 20.1411i 0.760717 0.760717i −0.215735 0.976452i \(-0.569215\pi\)
0.976452 + 0.215735i \(0.0692146\pi\)
\(702\) 0 0
\(703\) 42.6292 42.6292i 1.60779 1.60779i
\(704\) −8.45966 0.588964i −0.318835 0.0221974i
\(705\) 0 0
\(706\) −17.9303 + 2.14956i −0.674814 + 0.0808997i
\(707\) 0.372149 0.0139961
\(708\) 0 0
\(709\) −8.20276 + 8.20276i −0.308061 + 0.308061i −0.844157 0.536096i \(-0.819899\pi\)
0.536096 + 0.844157i \(0.319899\pi\)
\(710\) 5.83127 + 41.3681i 0.218844 + 1.55252i
\(711\) 0 0
\(712\) 14.8260 + 6.75387i 0.555628 + 0.253112i
\(713\) 5.53443 5.53443i 0.207266 0.207266i
\(714\) 0 0
\(715\) −0.161655 7.79963i −0.00604554 0.291690i
\(716\) 8.40286 + 5.11455i 0.314030 + 0.191140i
\(717\) 0 0
\(718\) −13.6378 10.7179i −0.508959 0.399990i
\(719\) −23.6655 −0.882576 −0.441288 0.897366i \(-0.645478\pi\)
−0.441288 + 0.897366i \(0.645478\pi\)
\(720\) 0 0
\(721\) −3.24890 −0.120995
\(722\) 19.1302 + 15.0344i 0.711952 + 0.559522i
\(723\) 0 0
\(724\) 23.9977 39.4267i 0.891869 1.46528i
\(725\) −13.2864 + 14.4360i −0.493444 + 0.536140i
\(726\) 0 0
\(727\) −1.68416 + 1.68416i −0.0624622 + 0.0624622i −0.737648 0.675186i \(-0.764064\pi\)
0.675186 + 0.737648i \(0.264064\pi\)
\(728\) 1.77433 0.663703i 0.0657610 0.0245985i
\(729\) 0 0
\(730\) −41.7610 31.4422i −1.54564 1.16373i
\(731\) 5.66137 5.66137i 0.209393 0.209393i
\(732\) 0 0
\(733\) −48.4131 −1.78818 −0.894089 0.447889i \(-0.852176\pi\)
−0.894089 + 0.447889i \(0.852176\pi\)
\(734\) −2.49185 + 0.298734i −0.0919759 + 0.0110265i
\(735\) 0 0
\(736\) −5.54193 + 3.76364i −0.204278 + 0.138730i
\(737\) 3.19860 3.19860i 0.117822 0.117822i
\(738\) 0 0
\(739\) −2.35313 + 2.35313i −0.0865612 + 0.0865612i −0.749062 0.662500i \(-0.769495\pi\)
0.662500 + 0.749062i \(0.269495\pi\)
\(740\) −38.7499 22.4988i −1.42447 0.827073i
\(741\) 0 0
\(742\) −1.44449 + 0.173172i −0.0530290 + 0.00635735i
\(743\) −17.6788 17.6788i −0.648571 0.648571i 0.304076 0.952648i \(-0.401652\pi\)
−0.952648 + 0.304076i \(0.901652\pi\)
\(744\) 0 0
\(745\) 0.0317812 + 1.53340i 0.00116437 + 0.0561796i
\(746\) −9.18150 7.21573i −0.336159 0.264187i
\(747\) 0 0
\(748\) −3.95349 + 0.961746i −0.144554 + 0.0351649i
\(749\) 0.200661 + 0.200661i 0.00733198 + 0.00733198i
\(750\) 0 0
\(751\) 40.8647i 1.49117i 0.666409 + 0.745587i \(0.267831\pi\)
−0.666409 + 0.745587i \(0.732169\pi\)
\(752\) 46.0612 + 14.6602i 1.67968 + 0.534601i
\(753\) 0 0
\(754\) 18.1345 2.17404i 0.660418 0.0791738i
\(755\) −10.0205 + 10.4446i −0.364682 + 0.380119i
\(756\) 0 0
\(757\) −24.6892 −0.897345 −0.448673 0.893696i \(-0.648103\pi\)
−0.448673 + 0.893696i \(0.648103\pi\)
\(758\) 2.04589 0.245270i 0.0743101 0.00890862i
\(759\) 0 0
\(760\) 15.0549 34.9505i 0.546098 1.26779i
\(761\) 6.54343i 0.237199i 0.992942 + 0.118600i \(0.0378405\pi\)
−0.992942 + 0.118600i \(0.962160\pi\)
\(762\) 0 0
\(763\) 1.31037 0.0474385
\(764\) 41.8754 10.1868i 1.51500 0.368546i
\(765\) 0 0
\(766\) 2.93710 + 24.4994i 0.106122 + 0.885200i
\(767\) 10.1450 + 10.1450i 0.366316 + 0.366316i
\(768\) 0 0
\(769\) 26.2710i 0.947357i 0.880698 + 0.473678i \(0.157074\pi\)
−0.880698 + 0.473678i \(0.842926\pi\)
\(770\) 0.675456 0.0952127i 0.0243417 0.00343123i
\(771\) 0 0
\(772\) 16.6413 27.3405i 0.598933 0.984007i
\(773\) 9.19242i 0.330628i 0.986241 + 0.165314i \(0.0528638\pi\)
−0.986241 + 0.165314i \(0.947136\pi\)
\(774\) 0 0
\(775\) 33.0174 1.36922i 1.18602 0.0491839i
\(776\) 44.0842 16.4901i 1.58253 0.591959i
\(777\) 0 0
\(778\) −3.05565 25.4883i −0.109550 0.913800i
\(779\) 7.34393 + 7.34393i 0.263124 + 0.263124i
\(780\) 0 0
\(781\) 9.90228 9.90228i 0.354332 0.354332i
\(782\) −1.98612 + 2.52719i −0.0710235 + 0.0903723i
\(783\) 0 0
\(784\) −12.7856 24.7241i −0.456630 0.883002i
\(785\) −18.9534 18.1837i −0.676475 0.649003i
\(786\) 0 0
\(787\) −20.9534 −0.746908 −0.373454 0.927649i \(-0.621827\pi\)
−0.373454 + 0.927649i \(0.621827\pi\)
\(788\) −11.0201 45.3007i −0.392574 1.61377i
\(789\) 0 0
\(790\) 4.39432 + 31.1741i 0.156343 + 1.10913i
\(791\) 3.29520 0.117164
\(792\) 0 0
\(793\) −16.4680 + 16.4680i −0.584794 + 0.584794i
\(794\) 16.0043 + 12.5778i 0.567972 + 0.446368i
\(795\) 0 0
\(796\) −4.17799 + 1.01636i −0.148085 + 0.0360239i
\(797\) 25.5883i 0.906384i −0.891413 0.453192i \(-0.850285\pi\)
0.891413 0.453192i \(-0.149715\pi\)
\(798\) 0 0
\(799\) 23.1926 0.820497
\(800\) −27.9777 4.15338i −0.989160 0.146844i
\(801\) 0 0
\(802\) −32.7060 + 41.6161i −1.15489 + 1.46952i
\(803\) 17.5227i 0.618362i
\(804\) 0 0
\(805\) 0.373061 0.388852i 0.0131487 0.0137052i
\(806\) −24.1874 19.0089i −0.851966 0.669559i
\(807\) 0 0
\(808\) 1.81221 + 4.84472i 0.0637532 + 0.170437i
\(809\) −4.93002 −0.173330 −0.0866652 0.996237i \(-0.527621\pi\)
−0.0866652 + 0.996237i \(0.527621\pi\)
\(810\) 0 0
\(811\) 35.3133 35.3133i 1.24002 1.24002i 0.280025 0.959993i \(-0.409657\pi\)
0.959993 0.280025i \(-0.0903426\pi\)
\(812\) 0.377486 + 1.55175i 0.0132472 + 0.0544557i
\(813\) 0 0
\(814\) 1.78785 + 14.9131i 0.0626642 + 0.522705i
\(815\) −3.01967 2.89704i −0.105774 0.101479i
\(816\) 0 0
\(817\) 17.7493 17.7493i 0.620970 0.620970i
\(818\) 7.15835 9.10849i 0.250286 0.318471i
\(819\) 0 0
\(820\) 3.87598 6.67563i 0.135355 0.233123i
\(821\) −36.2490 36.2490i −1.26510 1.26510i −0.948589 0.316509i \(-0.897489\pi\)
−0.316509 0.948589i \(-0.602511\pi\)
\(822\) 0 0
\(823\) 23.0235 + 23.0235i 0.802548 + 0.802548i 0.983493 0.180945i \(-0.0579156\pi\)
−0.180945 + 0.983493i \(0.557916\pi\)
\(824\) −15.8208 42.2949i −0.551142 1.47341i
\(825\) 0 0
\(826\) −0.775170 + 0.986349i −0.0269716 + 0.0343195i
\(827\) 44.8863i 1.56085i 0.625250 + 0.780424i \(0.284997\pi\)
−0.625250 + 0.780424i \(0.715003\pi\)
\(828\) 0 0
\(829\) −7.27338 7.27338i −0.252615 0.252615i 0.569427 0.822042i \(-0.307165\pi\)
−0.822042 + 0.569427i \(0.807165\pi\)
\(830\) 31.3553 4.41986i 1.08836 0.153416i
\(831\) 0 0
\(832\) 17.2804 + 19.8666i 0.599091 + 0.688751i
\(833\) −9.44340 9.44340i −0.327195 0.327195i
\(834\) 0 0
\(835\) −0.314462 15.1724i −0.0108824 0.525063i
\(836\) −12.3948 + 3.01523i −0.428684 + 0.104284i
\(837\) 0 0
\(838\) −5.28939 44.1208i −0.182719 1.52413i
\(839\) 6.23853i 0.215378i 0.994185 + 0.107689i \(0.0343451\pi\)
−0.994185 + 0.107689i \(0.965655\pi\)
\(840\) 0 0
\(841\) 13.6029i 0.469067i
\(842\) 5.46283 0.654909i 0.188262 0.0225696i
\(843\) 0 0
\(844\) 9.22452 15.1553i 0.317521 0.521666i
\(845\) 3.35497 3.49699i 0.115415 0.120300i
\(846\) 0 0
\(847\) 1.42115 + 1.42115i 0.0488312 + 0.0488312i
\(848\) −9.28845 17.9614i −0.318967 0.616798i
\(849\) 0 0
\(850\) −13.3959 + 2.17228i −0.459475 + 0.0745085i
\(851\) 8.39009 + 8.39009i 0.287609 + 0.287609i
\(852\) 0 0
\(853\) 32.1759i 1.10168i 0.834610 + 0.550841i \(0.185693\pi\)
−0.834610 + 0.550841i \(0.814307\pi\)
\(854\) −1.60109 1.25830i −0.0547882 0.0430580i
\(855\) 0 0
\(856\) −1.63511 + 3.58937i −0.0558869 + 0.122682i
\(857\) −11.0467 11.0467i −0.377348 0.377348i 0.492797 0.870145i \(-0.335975\pi\)
−0.870145 + 0.492797i \(0.835975\pi\)
\(858\) 0 0
\(859\) 1.75107 + 1.75107i 0.0597457 + 0.0597457i 0.736348 0.676603i \(-0.236548\pi\)
−0.676603 + 0.736348i \(0.736548\pi\)
\(860\) −16.1341 9.36773i −0.550168 0.319437i
\(861\) 0 0
\(862\) −5.92399 4.65566i −0.201772 0.158572i
\(863\) −4.70982 + 4.70982i −0.160324 + 0.160324i −0.782710 0.622386i \(-0.786163\pi\)
0.622386 + 0.782710i \(0.286163\pi\)
\(864\) 0 0
\(865\) 19.8840 20.7256i 0.676075 0.704693i
\(866\) 6.72913 0.806718i 0.228665 0.0274134i
\(867\) 0 0
\(868\) 1.39855 2.29772i 0.0474697 0.0779896i
\(869\) 7.46216 7.46216i 0.253136 0.253136i
\(870\) 0 0
\(871\) −14.0453 −0.475908
\(872\) 6.38093 + 17.0587i 0.216086 + 0.577679i
\(873\) 0 0
\(874\) −6.22680 + 7.92316i −0.210625 + 0.268005i
\(875\) 2.27076 0.141353i 0.0767658 0.00477860i
\(876\) 0 0
\(877\) 16.7655i 0.566130i 0.959101 + 0.283065i \(0.0913512\pi\)
−0.959101 + 0.283065i \(0.908649\pi\)
\(878\) 6.66932 + 5.24141i 0.225079 + 0.176889i
\(879\) 0 0
\(880\) 4.52868 + 8.32958i 0.152662 + 0.280790i
\(881\) −50.5390 −1.70270 −0.851352 0.524595i \(-0.824217\pi\)
−0.851352 + 0.524595i \(0.824217\pi\)
\(882\) 0 0
\(883\) 27.3039i 0.918848i −0.888217 0.459424i \(-0.848056\pi\)
0.888217 0.459424i \(-0.151944\pi\)
\(884\) 10.7916 + 6.56850i 0.362961 + 0.220922i
\(885\) 0 0
\(886\) −11.6567 + 14.8324i −0.391615 + 0.498303i
\(887\) 2.95052 2.95052i 0.0990688 0.0990688i −0.655835 0.754904i \(-0.727683\pi\)
0.754904 + 0.655835i \(0.227683\pi\)
\(888\) 0 0
\(889\) 1.42329 0.0477355
\(890\) −2.54244 18.0366i −0.0852229 0.604587i
\(891\) 0 0
\(892\) −12.0806 7.35304i −0.404487 0.246198i
\(893\) 72.7126 2.43324
\(894\) 0 0
\(895\) −0.227897 10.9957i −0.00761776 0.367547i
\(896\) −1.54490 + 1.70700i −0.0516115 + 0.0570269i
\(897\) 0 0
\(898\) 33.0464 + 25.9711i 1.10277 + 0.866668i
\(899\) 18.3379 18.3379i 0.611603 0.611603i
\(900\) 0 0
\(901\) −6.86040 6.86040i −0.228553 0.228553i
\(902\) −2.56916 + 0.308002i −0.0855436 + 0.0102553i
\(903\) 0 0
\(904\) 16.0462 + 42.8976i 0.533689 + 1.42675i
\(905\) −51.5926 + 1.06931i −1.71500 + 0.0355449i
\(906\) 0 0
\(907\) 0.0410041i 0.00136152i 1.00000 0.000680760i \(0.000216693\pi\)
−1.00000 0.000680760i \(0.999783\pi\)
\(908\) −10.6665 43.8472i −0.353980 1.45512i
\(909\) 0 0
\(910\) −1.69204 1.27395i −0.0560904 0.0422310i
\(911\) 21.7776i 0.721525i 0.932658 + 0.360763i \(0.117484\pi\)
−0.932658 + 0.360763i \(0.882516\pi\)
\(912\) 0 0
\(913\) −7.50552 7.50552i −0.248397 0.248397i
\(914\) −27.4918 + 3.29584i −0.909349 + 0.109017i
\(915\) 0 0
\(916\) −16.5191 10.0547i −0.545808 0.332216i
\(917\) 3.66392 0.120993
\(918\) 0 0
\(919\) 34.4842i 1.13753i 0.822500 + 0.568765i \(0.192579\pi\)
−0.822500 + 0.568765i \(0.807421\pi\)
\(920\) 6.87880 + 2.96304i 0.226787 + 0.0976885i
\(921\) 0 0
\(922\) −5.68417 47.4138i −0.187198 1.56149i
\(923\) −43.4818 −1.43122
\(924\) 0 0
\(925\) 2.07571 + 50.0538i 0.0682490 + 1.64576i
\(926\) 2.51754 + 20.9997i 0.0827314 + 0.690093i
\(927\) 0 0
\(928\) −18.3628 + 12.4705i −0.602788 + 0.409365i
\(929\) 19.8125i 0.650028i 0.945709 + 0.325014i \(0.105369\pi\)
−0.945709 + 0.325014i \(0.894631\pi\)
\(930\) 0 0
\(931\) −29.6066 29.6066i −0.970316 0.970316i
\(932\) −7.51140 4.57194i −0.246044 0.149759i
\(933\) 0 0
\(934\) 26.2299 33.3756i 0.858267 1.09208i
\(935\) 3.28262 + 3.14931i 0.107353 + 0.102994i
\(936\) 0 0
\(937\) −20.7731 20.7731i −0.678628 0.678628i 0.281062 0.959690i \(-0.409313\pi\)
−0.959690 + 0.281062i \(0.909313\pi\)
\(938\) −0.146183 1.21937i −0.00477306 0.0398138i
\(939\) 0 0
\(940\) −13.8597 52.2360i −0.452054 1.70375i
\(941\) 24.6412 24.6412i 0.803279 0.803279i −0.180328 0.983607i \(-0.557716\pi\)
0.983607 + 0.180328i \(0.0577158\pi\)
\(942\) 0 0
\(943\) −1.44540 + 1.44540i −0.0470687 + 0.0470687i
\(944\) −16.6152 5.28823i −0.540780 0.172117i
\(945\) 0 0
\(946\) 0.744400 + 6.20931i 0.0242025 + 0.201882i
\(947\) 46.1706 1.50034 0.750171 0.661244i \(-0.229971\pi\)
0.750171 + 0.661244i \(0.229971\pi\)
\(948\) 0 0
\(949\) 38.4718 38.4718i 1.24885 1.24885i
\(950\) −41.9982 + 6.81044i −1.36260 + 0.220960i
\(951\) 0 0
\(952\) −0.457937 + 1.00526i −0.0148418 + 0.0325806i
\(953\) 5.45044 5.45044i 0.176557 0.176557i −0.613296 0.789853i \(-0.710157\pi\)
0.789853 + 0.613296i \(0.210157\pi\)
\(954\) 0 0
\(955\) −34.7696 33.3576i −1.12512 1.07943i
\(956\) −5.23191 21.5070i −0.169212 0.695588i
\(957\) 0 0
\(958\) −19.1508 + 24.3680i −0.618733 + 0.787294i
\(959\) −1.74408 −0.0563194
\(960\) 0 0
\(961\) −12.6809 −0.409062
\(962\) 28.8171 36.6677i 0.929101 1.18221i
\(963\) 0 0
\(964\) 11.0973 + 45.6182i 0.357420 + 1.46926i
\(965\) −35.7770 + 0.741512i −1.15170 + 0.0238701i
\(966\) 0 0
\(967\) −18.1852 + 18.1852i −0.584798 + 0.584798i −0.936218 0.351420i \(-0.885699\pi\)
0.351420 + 0.936218i \(0.385699\pi\)
\(968\) −11.5804 + 25.4211i −0.372208 + 0.817067i
\(969\) 0 0
\(970\) −42.0396 31.6520i −1.34981 1.01628i
\(971\) 11.6265 11.6265i 0.373112 0.373112i −0.495497 0.868609i \(-0.665014\pi\)
0.868609 + 0.495497i \(0.165014\pi\)
\(972\) 0 0
\(973\) −2.97983 −0.0955290
\(974\) −1.34830 11.2467i −0.0432023 0.360366i
\(975\) 0 0
\(976\) 8.58413 26.9707i 0.274771 0.863311i
\(977\) 8.35835 8.35835i 0.267407 0.267407i −0.560647 0.828055i \(-0.689448\pi\)
0.828055 + 0.560647i \(0.189448\pi\)
\(978\) 0 0
\(979\) −4.31741 + 4.31741i −0.137985 + 0.137985i
\(980\) −15.6258 + 26.9124i −0.499147 + 0.859684i
\(981\) 0 0
\(982\) 6.06453 + 50.5865i 0.193527 + 1.61428i
\(983\) 18.1290 + 18.1290i 0.578226 + 0.578226i 0.934414 0.356188i \(-0.115924\pi\)
−0.356188 + 0.934414i \(0.615924\pi\)
\(984\) 0 0
\(985\) −36.0861 + 37.6136i −1.14980 + 1.19847i
\(986\) −6.58085 + 8.37367i −0.209577 + 0.266672i
\(987\) 0 0
\(988\) 33.8334 + 20.5933i 1.07638 + 0.655160i
\(989\) 3.49334 + 3.49334i 0.111082 + 0.111082i
\(990\) 0 0
\(991\) 28.8183i 0.915444i 0.889095 + 0.457722i \(0.151334\pi\)
−0.889095 + 0.457722i \(0.848666\pi\)
\(992\) 36.7225 + 7.01766i 1.16594 + 0.222811i
\(993\) 0 0
\(994\) −0.452557 3.77494i −0.0143542 0.119734i
\(995\) 3.46903 + 3.32815i 0.109975 + 0.105509i
\(996\) 0 0
\(997\) −30.7058 −0.972463 −0.486232 0.873830i \(-0.661629\pi\)
−0.486232 + 0.873830i \(0.661629\pi\)
\(998\) −4.48057 37.3741i −0.141830 1.18306i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bd.f.523.4 16
3.2 odd 2 240.2.bc.e.43.5 yes 16
5.2 odd 4 720.2.z.f.667.2 16
12.11 even 2 960.2.bc.e.463.8 16
15.2 even 4 240.2.y.e.187.7 yes 16
16.3 odd 4 720.2.z.f.163.2 16
24.5 odd 2 1920.2.bc.i.1183.1 16
24.11 even 2 1920.2.bc.j.1183.1 16
48.5 odd 4 1920.2.y.j.223.5 16
48.11 even 4 1920.2.y.i.223.5 16
48.29 odd 4 960.2.y.e.943.4 16
48.35 even 4 240.2.y.e.163.7 16
60.47 odd 4 960.2.y.e.847.4 16
80.67 even 4 inner 720.2.bd.f.307.4 16
120.77 even 4 1920.2.y.i.1567.5 16
120.107 odd 4 1920.2.y.j.1567.5 16
240.77 even 4 960.2.bc.e.367.8 16
240.107 odd 4 1920.2.bc.i.607.1 16
240.197 even 4 1920.2.bc.j.607.1 16
240.227 odd 4 240.2.bc.e.67.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.7 16 48.35 even 4
240.2.y.e.187.7 yes 16 15.2 even 4
240.2.bc.e.43.5 yes 16 3.2 odd 2
240.2.bc.e.67.5 yes 16 240.227 odd 4
720.2.z.f.163.2 16 16.3 odd 4
720.2.z.f.667.2 16 5.2 odd 4
720.2.bd.f.307.4 16 80.67 even 4 inner
720.2.bd.f.523.4 16 1.1 even 1 trivial
960.2.y.e.847.4 16 60.47 odd 4
960.2.y.e.943.4 16 48.29 odd 4
960.2.bc.e.367.8 16 240.77 even 4
960.2.bc.e.463.8 16 12.11 even 2
1920.2.y.i.223.5 16 48.11 even 4
1920.2.y.i.1567.5 16 120.77 even 4
1920.2.y.j.223.5 16 48.5 odd 4
1920.2.y.j.1567.5 16 120.107 odd 4
1920.2.bc.i.607.1 16 240.107 odd 4
1920.2.bc.i.1183.1 16 24.5 odd 2
1920.2.bc.j.607.1 16 240.197 even 4
1920.2.bc.j.1183.1 16 24.11 even 2