Properties

Label 720.2.bd.a.523.1
Level $720$
Weight $2$
Character 720.523
Analytic conductor $5.749$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(307,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 523.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 720.523
Dual form 720.2.bd.a.307.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +(-1.00000 + 2.00000i) q^{5} +(-3.00000 + 3.00000i) q^{7} +(2.00000 - 2.00000i) q^{8} +(3.00000 - 1.00000i) q^{10} +(1.00000 - 1.00000i) q^{11} -2.00000 q^{13} +6.00000 q^{14} -4.00000 q^{16} +(-1.00000 + 1.00000i) q^{17} +(3.00000 - 3.00000i) q^{19} +(-4.00000 - 2.00000i) q^{20} -2.00000 q^{22} +(1.00000 + 1.00000i) q^{23} +(-3.00000 - 4.00000i) q^{25} +(2.00000 + 2.00000i) q^{26} +(-6.00000 - 6.00000i) q^{28} +(-7.00000 - 7.00000i) q^{29} -2.00000i q^{31} +(4.00000 + 4.00000i) q^{32} +2.00000 q^{34} +(-3.00000 - 9.00000i) q^{35} -6.00000 q^{37} -6.00000 q^{38} +(2.00000 + 6.00000i) q^{40} -4.00000i q^{41} +4.00000 q^{43} +(2.00000 + 2.00000i) q^{44} -2.00000i q^{46} +(-7.00000 - 7.00000i) q^{47} -11.0000i q^{49} +(-1.00000 + 7.00000i) q^{50} -4.00000i q^{52} +8.00000i q^{53} +(1.00000 + 3.00000i) q^{55} +12.0000i q^{56} +14.0000i q^{58} +(3.00000 + 3.00000i) q^{59} +(-1.00000 + 1.00000i) q^{61} +(-2.00000 + 2.00000i) q^{62} -8.00000i q^{64} +(2.00000 - 4.00000i) q^{65} +4.00000 q^{67} +(-2.00000 - 2.00000i) q^{68} +(-6.00000 + 12.0000i) q^{70} +(-3.00000 + 3.00000i) q^{73} +(6.00000 + 6.00000i) q^{74} +(6.00000 + 6.00000i) q^{76} +6.00000i q^{77} -8.00000 q^{79} +(4.00000 - 8.00000i) q^{80} +(-4.00000 + 4.00000i) q^{82} +2.00000i q^{83} +(-1.00000 - 3.00000i) q^{85} +(-4.00000 - 4.00000i) q^{86} -4.00000i q^{88} -6.00000 q^{89} +(6.00000 - 6.00000i) q^{91} +(-2.00000 + 2.00000i) q^{92} +14.0000i q^{94} +(3.00000 + 9.00000i) q^{95} +(-11.0000 + 11.0000i) q^{97} +(-11.0000 + 11.0000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{5} - 6 q^{7} + 4 q^{8} + 6 q^{10} + 2 q^{11} - 4 q^{13} + 12 q^{14} - 8 q^{16} - 2 q^{17} + 6 q^{19} - 8 q^{20} - 4 q^{22} + 2 q^{23} - 6 q^{25} + 4 q^{26} - 12 q^{28} - 14 q^{29} + 8 q^{32}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) 0 0
\(7\) −3.00000 + 3.00000i −1.13389 + 1.13389i −0.144370 + 0.989524i \(0.546115\pi\)
−0.989524 + 0.144370i \(0.953885\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 0 0
\(10\) 3.00000 1.00000i 0.948683 0.316228i
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 6.00000 1.60357
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 0 0
\(19\) 3.00000 3.00000i 0.688247 0.688247i −0.273597 0.961844i \(-0.588214\pi\)
0.961844 + 0.273597i \(0.0882135\pi\)
\(20\) −4.00000 2.00000i −0.894427 0.447214i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 1.00000 + 1.00000i 0.208514 + 0.208514i 0.803636 0.595121i \(-0.202896\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 2.00000 + 2.00000i 0.392232 + 0.392232i
\(27\) 0 0
\(28\) −6.00000 6.00000i −1.13389 1.13389i
\(29\) −7.00000 7.00000i −1.29987 1.29987i −0.928477 0.371391i \(-0.878881\pi\)
−0.371391 0.928477i \(-0.621119\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i −0.983739 0.179605i \(-0.942518\pi\)
0.983739 0.179605i \(-0.0574821\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −3.00000 9.00000i −0.507093 1.52128i
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 2.00000 + 6.00000i 0.316228 + 0.948683i
\(41\) 4.00000i 0.624695i −0.949968 0.312348i \(-0.898885\pi\)
0.949968 0.312348i \(-0.101115\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 2.00000 + 2.00000i 0.301511 + 0.301511i
\(45\) 0 0
\(46\) 2.00000i 0.294884i
\(47\) −7.00000 7.00000i −1.02105 1.02105i −0.999774 0.0212814i \(-0.993225\pi\)
−0.0212814 0.999774i \(-0.506775\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) −1.00000 + 7.00000i −0.141421 + 0.989949i
\(51\) 0 0
\(52\) 4.00000i 0.554700i
\(53\) 8.00000i 1.09888i 0.835532 + 0.549442i \(0.185160\pi\)
−0.835532 + 0.549442i \(0.814840\pi\)
\(54\) 0 0
\(55\) 1.00000 + 3.00000i 0.134840 + 0.404520i
\(56\) 12.0000i 1.60357i
\(57\) 0 0
\(58\) 14.0000i 1.83829i
\(59\) 3.00000 + 3.00000i 0.390567 + 0.390567i 0.874889 0.484323i \(-0.160934\pi\)
−0.484323 + 0.874889i \(0.660934\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.00000i −0.128037 + 0.128037i −0.768221 0.640184i \(-0.778858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) −2.00000 + 2.00000i −0.254000 + 0.254000i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 2.00000 4.00000i 0.248069 0.496139i
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −2.00000 2.00000i −0.242536 0.242536i
\(69\) 0 0
\(70\) −6.00000 + 12.0000i −0.717137 + 1.43427i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −3.00000 + 3.00000i −0.351123 + 0.351123i −0.860527 0.509404i \(-0.829866\pi\)
0.509404 + 0.860527i \(0.329866\pi\)
\(74\) 6.00000 + 6.00000i 0.697486 + 0.697486i
\(75\) 0 0
\(76\) 6.00000 + 6.00000i 0.688247 + 0.688247i
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 4.00000 8.00000i 0.447214 0.894427i
\(81\) 0 0
\(82\) −4.00000 + 4.00000i −0.441726 + 0.441726i
\(83\) 2.00000i 0.219529i 0.993958 + 0.109764i \(0.0350096\pi\)
−0.993958 + 0.109764i \(0.964990\pi\)
\(84\) 0 0
\(85\) −1.00000 3.00000i −0.108465 0.325396i
\(86\) −4.00000 4.00000i −0.431331 0.431331i
\(87\) 0 0
\(88\) 4.00000i 0.426401i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 6.00000 6.00000i 0.628971 0.628971i
\(92\) −2.00000 + 2.00000i −0.208514 + 0.208514i
\(93\) 0 0
\(94\) 14.0000i 1.44399i
\(95\) 3.00000 + 9.00000i 0.307794 + 0.923381i
\(96\) 0 0
\(97\) −11.0000 + 11.0000i −1.11688 + 1.11688i −0.124684 + 0.992196i \(0.539792\pi\)
−0.992196 + 0.124684i \(0.960208\pi\)
\(98\) −11.0000 + 11.0000i −1.11117 + 1.11117i
\(99\) 0 0
\(100\) 8.00000 6.00000i 0.800000 0.600000i
\(101\) 5.00000 + 5.00000i 0.497519 + 0.497519i 0.910665 0.413146i \(-0.135570\pi\)
−0.413146 + 0.910665i \(0.635570\pi\)
\(102\) 0 0
\(103\) −5.00000 5.00000i −0.492665 0.492665i 0.416480 0.909145i \(-0.363264\pi\)
−0.909145 + 0.416480i \(0.863264\pi\)
\(104\) −4.00000 + 4.00000i −0.392232 + 0.392232i
\(105\) 0 0
\(106\) 8.00000 8.00000i 0.777029 0.777029i
\(107\) 6.00000i 0.580042i −0.957020 0.290021i \(-0.906338\pi\)
0.957020 0.290021i \(-0.0936623\pi\)
\(108\) 0 0
\(109\) −5.00000 5.00000i −0.478913 0.478913i 0.425871 0.904784i \(-0.359968\pi\)
−0.904784 + 0.425871i \(0.859968\pi\)
\(110\) 2.00000 4.00000i 0.190693 0.381385i
\(111\) 0 0
\(112\) 12.0000 12.0000i 1.13389 1.13389i
\(113\) −13.0000 13.0000i −1.22294 1.22294i −0.966583 0.256354i \(-0.917479\pi\)
−0.256354 0.966583i \(-0.582521\pi\)
\(114\) 0 0
\(115\) −3.00000 + 1.00000i −0.279751 + 0.0932505i
\(116\) 14.0000 14.0000i 1.29987 1.29987i
\(117\) 0 0
\(118\) 6.00000i 0.552345i
\(119\) 6.00000i 0.550019i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) 7.00000 + 7.00000i 0.621150 + 0.621150i 0.945825 0.324676i \(-0.105255\pi\)
−0.324676 + 0.945825i \(0.605255\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) −6.00000 + 2.00000i −0.526235 + 0.175412i
\(131\) 7.00000 + 7.00000i 0.611593 + 0.611593i 0.943361 0.331768i \(-0.107645\pi\)
−0.331768 + 0.943361i \(0.607645\pi\)
\(132\) 0 0
\(133\) 18.0000i 1.56080i
\(134\) −4.00000 4.00000i −0.345547 0.345547i
\(135\) 0 0
\(136\) 4.00000i 0.342997i
\(137\) −9.00000 9.00000i −0.768922 0.768922i 0.208995 0.977917i \(-0.432981\pi\)
−0.977917 + 0.208995i \(0.932981\pi\)
\(138\) 0 0
\(139\) 9.00000 + 9.00000i 0.763370 + 0.763370i 0.976930 0.213560i \(-0.0685059\pi\)
−0.213560 + 0.976930i \(0.568506\pi\)
\(140\) 18.0000 6.00000i 1.52128 0.507093i
\(141\) 0 0
\(142\) 0 0
\(143\) −2.00000 + 2.00000i −0.167248 + 0.167248i
\(144\) 0 0
\(145\) 21.0000 7.00000i 1.74396 0.581318i
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) 12.0000i 0.986394i
\(149\) 1.00000 1.00000i 0.0819232 0.0819232i −0.664958 0.746881i \(-0.731550\pi\)
0.746881 + 0.664958i \(0.231550\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 12.0000i 0.973329i
\(153\) 0 0
\(154\) 6.00000 6.00000i 0.483494 0.483494i
\(155\) 4.00000 + 2.00000i 0.321288 + 0.160644i
\(156\) 0 0
\(157\) 20.0000i 1.59617i −0.602542 0.798087i \(-0.705846\pi\)
0.602542 0.798087i \(-0.294154\pi\)
\(158\) 8.00000 + 8.00000i 0.636446 + 0.636446i
\(159\) 0 0
\(160\) −12.0000 + 4.00000i −0.948683 + 0.316228i
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 14.0000i 1.09656i 0.836293 + 0.548282i \(0.184718\pi\)
−0.836293 + 0.548282i \(0.815282\pi\)
\(164\) 8.00000 0.624695
\(165\) 0 0
\(166\) 2.00000 2.00000i 0.155230 0.155230i
\(167\) 3.00000 3.00000i 0.232147 0.232147i −0.581441 0.813588i \(-0.697511\pi\)
0.813588 + 0.581441i \(0.197511\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −2.00000 + 4.00000i −0.153393 + 0.306786i
\(171\) 0 0
\(172\) 8.00000i 0.609994i
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 21.0000 + 3.00000i 1.58745 + 0.226779i
\(176\) −4.00000 + 4.00000i −0.301511 + 0.301511i
\(177\) 0 0
\(178\) 6.00000 + 6.00000i 0.449719 + 0.449719i
\(179\) 5.00000 5.00000i 0.373718 0.373718i −0.495112 0.868829i \(-0.664873\pi\)
0.868829 + 0.495112i \(0.164873\pi\)
\(180\) 0 0
\(181\) 3.00000 + 3.00000i 0.222988 + 0.222988i 0.809756 0.586767i \(-0.199600\pi\)
−0.586767 + 0.809756i \(0.699600\pi\)
\(182\) −12.0000 −0.889499
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) 6.00000 12.0000i 0.441129 0.882258i
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) 14.0000 14.0000i 1.02105 1.02105i
\(189\) 0 0
\(190\) 6.00000 12.0000i 0.435286 0.870572i
\(191\) 18.0000i 1.30243i 0.758891 + 0.651217i \(0.225741\pi\)
−0.758891 + 0.651217i \(0.774259\pi\)
\(192\) 0 0
\(193\) −15.0000 15.0000i −1.07972 1.07972i −0.996534 0.0831899i \(-0.973489\pi\)
−0.0831899 0.996534i \(-0.526511\pi\)
\(194\) 22.0000 1.57951
\(195\) 0 0
\(196\) 22.0000 1.57143
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 10.0000i 0.708881i −0.935079 0.354441i \(-0.884671\pi\)
0.935079 0.354441i \(-0.115329\pi\)
\(200\) −14.0000 2.00000i −0.989949 0.141421i
\(201\) 0 0
\(202\) 10.0000i 0.703598i
\(203\) 42.0000 2.94782
\(204\) 0 0
\(205\) 8.00000 + 4.00000i 0.558744 + 0.279372i
\(206\) 10.0000i 0.696733i
\(207\) 0 0
\(208\) 8.00000 0.554700
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) −19.0000 19.0000i −1.30801 1.30801i −0.922847 0.385167i \(-0.874144\pi\)
−0.385167 0.922847i \(-0.625856\pi\)
\(212\) −16.0000 −1.09888
\(213\) 0 0
\(214\) −6.00000 + 6.00000i −0.410152 + 0.410152i
\(215\) −4.00000 + 8.00000i −0.272798 + 0.545595i
\(216\) 0 0
\(217\) 6.00000 + 6.00000i 0.407307 + 0.407307i
\(218\) 10.0000i 0.677285i
\(219\) 0 0
\(220\) −6.00000 + 2.00000i −0.404520 + 0.134840i
\(221\) 2.00000 2.00000i 0.134535 0.134535i
\(222\) 0 0
\(223\) 9.00000 9.00000i 0.602685 0.602685i −0.338340 0.941024i \(-0.609865\pi\)
0.941024 + 0.338340i \(0.109865\pi\)
\(224\) −24.0000 −1.60357
\(225\) 0 0
\(226\) 26.0000i 1.72949i
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −1.00000 + 1.00000i −0.0660819 + 0.0660819i −0.739375 0.673293i \(-0.764879\pi\)
0.673293 + 0.739375i \(0.264879\pi\)
\(230\) 4.00000 + 2.00000i 0.263752 + 0.131876i
\(231\) 0 0
\(232\) −28.0000 −1.83829
\(233\) −9.00000 + 9.00000i −0.589610 + 0.589610i −0.937526 0.347916i \(-0.886889\pi\)
0.347916 + 0.937526i \(0.386889\pi\)
\(234\) 0 0
\(235\) 21.0000 7.00000i 1.36989 0.456630i
\(236\) −6.00000 + 6.00000i −0.390567 + 0.390567i
\(237\) 0 0
\(238\) −6.00000 + 6.00000i −0.388922 + 0.388922i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 9.00000 9.00000i 0.578542 0.578542i
\(243\) 0 0
\(244\) −2.00000 2.00000i −0.128037 0.128037i
\(245\) 22.0000 + 11.0000i 1.40553 + 0.702764i
\(246\) 0 0
\(247\) −6.00000 + 6.00000i −0.381771 + 0.381771i
\(248\) −4.00000 4.00000i −0.254000 0.254000i
\(249\) 0 0
\(250\) −13.0000 9.00000i −0.822192 0.569210i
\(251\) −11.0000 + 11.0000i −0.694314 + 0.694314i −0.963178 0.268864i \(-0.913352\pi\)
0.268864 + 0.963178i \(0.413352\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 14.0000i 0.878438i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −13.0000 + 13.0000i −0.810918 + 0.810918i −0.984771 0.173854i \(-0.944378\pi\)
0.173854 + 0.984771i \(0.444378\pi\)
\(258\) 0 0
\(259\) 18.0000 18.0000i 1.11847 1.11847i
\(260\) 8.00000 + 4.00000i 0.496139 + 0.248069i
\(261\) 0 0
\(262\) 14.0000i 0.864923i
\(263\) −7.00000 7.00000i −0.431638 0.431638i 0.457547 0.889185i \(-0.348728\pi\)
−0.889185 + 0.457547i \(0.848728\pi\)
\(264\) 0 0
\(265\) −16.0000 8.00000i −0.982872 0.491436i
\(266\) 18.0000 18.0000i 1.10365 1.10365i
\(267\) 0 0
\(268\) 8.00000i 0.488678i
\(269\) 1.00000 + 1.00000i 0.0609711 + 0.0609711i 0.736935 0.675964i \(-0.236272\pi\)
−0.675964 + 0.736935i \(0.736272\pi\)
\(270\) 0 0
\(271\) 30.0000i 1.82237i 0.411997 + 0.911185i \(0.364831\pi\)
−0.411997 + 0.911185i \(0.635169\pi\)
\(272\) 4.00000 4.00000i 0.242536 0.242536i
\(273\) 0 0
\(274\) 18.0000i 1.08742i
\(275\) −7.00000 1.00000i −0.422116 0.0603023i
\(276\) 0 0
\(277\) 18.0000 1.08152 0.540758 0.841178i \(-0.318138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 18.0000i 1.07957i
\(279\) 0 0
\(280\) −24.0000 12.0000i −1.43427 0.717137i
\(281\) 16.0000i 0.954480i 0.878773 + 0.477240i \(0.158363\pi\)
−0.878773 + 0.477240i \(0.841637\pi\)
\(282\) 0 0
\(283\) 12.0000 0.713326 0.356663 0.934233i \(-0.383914\pi\)
0.356663 + 0.934233i \(0.383914\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 12.0000 + 12.0000i 0.708338 + 0.708338i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) −28.0000 14.0000i −1.64422 0.822108i
\(291\) 0 0
\(292\) −6.00000 6.00000i −0.351123 0.351123i
\(293\) 12.0000i 0.701047i 0.936554 + 0.350524i \(0.113996\pi\)
−0.936554 + 0.350524i \(0.886004\pi\)
\(294\) 0 0
\(295\) −9.00000 + 3.00000i −0.524000 + 0.174667i
\(296\) −12.0000 + 12.0000i −0.697486 + 0.697486i
\(297\) 0 0
\(298\) −2.00000 −0.115857
\(299\) −2.00000 2.00000i −0.115663 0.115663i
\(300\) 0 0
\(301\) −12.0000 + 12.0000i −0.691669 + 0.691669i
\(302\) −8.00000 8.00000i −0.460348 0.460348i
\(303\) 0 0
\(304\) −12.0000 + 12.0000i −0.688247 + 0.688247i
\(305\) −1.00000 3.00000i −0.0572598 0.171780i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) −12.0000 −0.683763
\(309\) 0 0
\(310\) −2.00000 6.00000i −0.113592 0.340777i
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) 13.0000 13.0000i 0.734803 0.734803i −0.236764 0.971567i \(-0.576087\pi\)
0.971567 + 0.236764i \(0.0760868\pi\)
\(314\) −20.0000 + 20.0000i −1.12867 + 1.12867i
\(315\) 0 0
\(316\) 16.0000i 0.900070i
\(317\) 8.00000i 0.449325i 0.974437 + 0.224662i \(0.0721279\pi\)
−0.974437 + 0.224662i \(0.927872\pi\)
\(318\) 0 0
\(319\) −14.0000 −0.783850
\(320\) 16.0000 + 8.00000i 0.894427 + 0.447214i
\(321\) 0 0
\(322\) 6.00000 + 6.00000i 0.334367 + 0.334367i
\(323\) 6.00000i 0.333849i
\(324\) 0 0
\(325\) 6.00000 + 8.00000i 0.332820 + 0.443760i
\(326\) 14.0000 14.0000i 0.775388 0.775388i
\(327\) 0 0
\(328\) −8.00000 8.00000i −0.441726 0.441726i
\(329\) 42.0000 2.31553
\(330\) 0 0
\(331\) −21.0000 + 21.0000i −1.15426 + 1.15426i −0.168576 + 0.985689i \(0.553917\pi\)
−0.985689 + 0.168576i \(0.946083\pi\)
\(332\) −4.00000 −0.219529
\(333\) 0 0
\(334\) −6.00000 −0.328305
\(335\) −4.00000 + 8.00000i −0.218543 + 0.437087i
\(336\) 0 0
\(337\) −11.0000 + 11.0000i −0.599208 + 0.599208i −0.940102 0.340894i \(-0.889270\pi\)
0.340894 + 0.940102i \(0.389270\pi\)
\(338\) 9.00000 + 9.00000i 0.489535 + 0.489535i
\(339\) 0 0
\(340\) 6.00000 2.00000i 0.325396 0.108465i
\(341\) −2.00000 2.00000i −0.108306 0.108306i
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 8.00000 8.00000i 0.431331 0.431331i
\(345\) 0 0
\(346\) −6.00000 6.00000i −0.322562 0.322562i
\(347\) 2.00000i 0.107366i 0.998558 + 0.0536828i \(0.0170960\pi\)
−0.998558 + 0.0536828i \(0.982904\pi\)
\(348\) 0 0
\(349\) 3.00000 + 3.00000i 0.160586 + 0.160586i 0.782826 0.622240i \(-0.213777\pi\)
−0.622240 + 0.782826i \(0.713777\pi\)
\(350\) −18.0000 24.0000i −0.962140 1.28285i
\(351\) 0 0
\(352\) 8.00000 0.426401
\(353\) −13.0000 13.0000i −0.691920 0.691920i 0.270734 0.962654i \(-0.412734\pi\)
−0.962654 + 0.270734i \(0.912734\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.0000i 0.635999i
\(357\) 0 0
\(358\) −10.0000 −0.528516
\(359\) 14.0000i 0.738892i −0.929252 0.369446i \(-0.879548\pi\)
0.929252 0.369446i \(-0.120452\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 6.00000i 0.315353i
\(363\) 0 0
\(364\) 12.0000 + 12.0000i 0.628971 + 0.628971i
\(365\) −3.00000 9.00000i −0.157027 0.471082i
\(366\) 0 0
\(367\) −21.0000 21.0000i −1.09619 1.09619i −0.994852 0.101339i \(-0.967687\pi\)
−0.101339 0.994852i \(-0.532313\pi\)
\(368\) −4.00000 4.00000i −0.208514 0.208514i
\(369\) 0 0
\(370\) −18.0000 + 6.00000i −0.935775 + 0.311925i
\(371\) −24.0000 24.0000i −1.24602 1.24602i
\(372\) 0 0
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 2.00000 2.00000i 0.103418 0.103418i
\(375\) 0 0
\(376\) −28.0000 −1.44399
\(377\) 14.0000 + 14.0000i 0.721037 + 0.721037i
\(378\) 0 0
\(379\) −15.0000 15.0000i −0.770498 0.770498i 0.207695 0.978194i \(-0.433404\pi\)
−0.978194 + 0.207695i \(0.933404\pi\)
\(380\) −18.0000 + 6.00000i −0.923381 + 0.307794i
\(381\) 0 0
\(382\) 18.0000 18.0000i 0.920960 0.920960i
\(383\) −5.00000 + 5.00000i −0.255488 + 0.255488i −0.823216 0.567728i \(-0.807823\pi\)
0.567728 + 0.823216i \(0.307823\pi\)
\(384\) 0 0
\(385\) −12.0000 6.00000i −0.611577 0.305788i
\(386\) 30.0000i 1.52696i
\(387\) 0 0
\(388\) −22.0000 22.0000i −1.11688 1.11688i
\(389\) −23.0000 + 23.0000i −1.16615 + 1.16615i −0.183041 + 0.983105i \(0.558594\pi\)
−0.983105 + 0.183041i \(0.941406\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) −22.0000 22.0000i −1.11117 1.11117i
\(393\) 0 0
\(394\) 6.00000 + 6.00000i 0.302276 + 0.302276i
\(395\) 8.00000 16.0000i 0.402524 0.805047i
\(396\) 0 0
\(397\) 32.0000i 1.60603i 0.595956 + 0.803017i \(0.296773\pi\)
−0.595956 + 0.803017i \(0.703227\pi\)
\(398\) −10.0000 + 10.0000i −0.501255 + 0.501255i
\(399\) 0 0
\(400\) 12.0000 + 16.0000i 0.600000 + 0.800000i
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 4.00000i 0.199254i
\(404\) −10.0000 + 10.0000i −0.497519 + 0.497519i
\(405\) 0 0
\(406\) −42.0000 42.0000i −2.08443 2.08443i
\(407\) −6.00000 + 6.00000i −0.297409 + 0.297409i
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) −4.00000 12.0000i −0.197546 0.592638i
\(411\) 0 0
\(412\) 10.0000 10.0000i 0.492665 0.492665i
\(413\) −18.0000 −0.885722
\(414\) 0 0
\(415\) −4.00000 2.00000i −0.196352 0.0981761i
\(416\) −8.00000 8.00000i −0.392232 0.392232i
\(417\) 0 0
\(418\) −6.00000 + 6.00000i −0.293470 + 0.293470i
\(419\) 17.0000 17.0000i 0.830504 0.830504i −0.157081 0.987586i \(-0.550208\pi\)
0.987586 + 0.157081i \(0.0502085\pi\)
\(420\) 0 0
\(421\) −5.00000 5.00000i −0.243685 0.243685i 0.574688 0.818373i \(-0.305124\pi\)
−0.818373 + 0.574688i \(0.805124\pi\)
\(422\) 38.0000i 1.84981i
\(423\) 0 0
\(424\) 16.0000 + 16.0000i 0.777029 + 0.777029i
\(425\) 7.00000 + 1.00000i 0.339550 + 0.0485071i
\(426\) 0 0
\(427\) 6.00000i 0.290360i
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 12.0000 4.00000i 0.578691 0.192897i
\(431\) 2.00000i 0.0963366i 0.998839 + 0.0481683i \(0.0153384\pi\)
−0.998839 + 0.0481683i \(0.984662\pi\)
\(432\) 0 0
\(433\) 5.00000 + 5.00000i 0.240285 + 0.240285i 0.816968 0.576683i \(-0.195653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 12.0000i 0.576018i
\(435\) 0 0
\(436\) 10.0000 10.0000i 0.478913 0.478913i
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) 26.0000i 1.24091i −0.784241 0.620456i \(-0.786947\pi\)
0.784241 0.620456i \(-0.213053\pi\)
\(440\) 8.00000 + 4.00000i 0.381385 + 0.190693i
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 6.00000 12.0000i 0.284427 0.568855i
\(446\) −18.0000 −0.852325
\(447\) 0 0
\(448\) 24.0000 + 24.0000i 1.13389 + 1.13389i
\(449\) 24.0000i 1.13263i 0.824189 + 0.566315i \(0.191631\pi\)
−0.824189 + 0.566315i \(0.808369\pi\)
\(450\) 0 0
\(451\) −4.00000 4.00000i −0.188353 0.188353i
\(452\) 26.0000 26.0000i 1.22294 1.22294i
\(453\) 0 0
\(454\) 12.0000 + 12.0000i 0.563188 + 0.563188i
\(455\) 6.00000 + 18.0000i 0.281284 + 0.843853i
\(456\) 0 0
\(457\) −7.00000 7.00000i −0.327446 0.327446i 0.524168 0.851615i \(-0.324376\pi\)
−0.851615 + 0.524168i \(0.824376\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) −2.00000 6.00000i −0.0932505 0.279751i
\(461\) 21.0000 21.0000i 0.978068 0.978068i −0.0216971 0.999765i \(-0.506907\pi\)
0.999765 + 0.0216971i \(0.00690694\pi\)
\(462\) 0 0
\(463\) −19.0000 + 19.0000i −0.883005 + 0.883005i −0.993839 0.110834i \(-0.964648\pi\)
0.110834 + 0.993839i \(0.464648\pi\)
\(464\) 28.0000 + 28.0000i 1.29987 + 1.29987i
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) −12.0000 + 12.0000i −0.554109 + 0.554109i
\(470\) −28.0000 14.0000i −1.29154 0.645772i
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) 4.00000 4.00000i 0.183920 0.183920i
\(474\) 0 0
\(475\) −21.0000 3.00000i −0.963546 0.137649i
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 14.0000 + 14.0000i 0.637683 + 0.637683i
\(483\) 0 0
\(484\) −18.0000 −0.818182
\(485\) −11.0000 33.0000i −0.499484 1.49845i
\(486\) 0 0
\(487\) −15.0000 + 15.0000i −0.679715 + 0.679715i −0.959936 0.280221i \(-0.909592\pi\)
0.280221 + 0.959936i \(0.409592\pi\)
\(488\) 4.00000i 0.181071i
\(489\) 0 0
\(490\) −11.0000 33.0000i −0.496929 1.49079i
\(491\) 9.00000 9.00000i 0.406164 0.406164i −0.474234 0.880399i \(-0.657275\pi\)
0.880399 + 0.474234i \(0.157275\pi\)
\(492\) 0 0
\(493\) 14.0000 0.630528
\(494\) 12.0000 0.539906
\(495\) 0 0
\(496\) 8.00000i 0.359211i
\(497\) 0 0
\(498\) 0 0
\(499\) −29.0000 + 29.0000i −1.29822 + 1.29822i −0.368650 + 0.929568i \(0.620180\pi\)
−0.929568 + 0.368650i \(0.879820\pi\)
\(500\) 4.00000 + 22.0000i 0.178885 + 0.983870i
\(501\) 0 0
\(502\) 22.0000 0.981908
\(503\) 29.0000 + 29.0000i 1.29305 + 1.29305i 0.932893 + 0.360153i \(0.117275\pi\)
0.360153 + 0.932893i \(0.382725\pi\)
\(504\) 0 0
\(505\) −15.0000 + 5.00000i −0.667491 + 0.222497i
\(506\) −2.00000 2.00000i −0.0889108 0.0889108i
\(507\) 0 0
\(508\) −14.0000 + 14.0000i −0.621150 + 0.621150i
\(509\) 17.0000 + 17.0000i 0.753512 + 0.753512i 0.975133 0.221621i \(-0.0711348\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) 18.0000i 0.796273i
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) 26.0000 1.14681
\(515\) 15.0000 5.00000i 0.660979 0.220326i
\(516\) 0 0
\(517\) −14.0000 −0.615719
\(518\) −36.0000 −1.58175
\(519\) 0 0
\(520\) −4.00000 12.0000i −0.175412 0.526235i
\(521\) 16.0000i 0.700973i −0.936568 0.350486i \(-0.886016\pi\)
0.936568 0.350486i \(-0.113984\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −14.0000 + 14.0000i −0.611593 + 0.611593i
\(525\) 0 0
\(526\) 14.0000i 0.610429i
\(527\) 2.00000 + 2.00000i 0.0871214 + 0.0871214i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 8.00000 + 24.0000i 0.347498 + 1.04249i
\(531\) 0 0
\(532\) −36.0000 −1.56080
\(533\) 8.00000i 0.346518i
\(534\) 0 0
\(535\) 12.0000 + 6.00000i 0.518805 + 0.259403i
\(536\) 8.00000 8.00000i 0.345547 0.345547i
\(537\) 0 0
\(538\) 2.00000i 0.0862261i
\(539\) −11.0000 11.0000i −0.473804 0.473804i
\(540\) 0 0
\(541\) 15.0000 15.0000i 0.644900 0.644900i −0.306856 0.951756i \(-0.599277\pi\)
0.951756 + 0.306856i \(0.0992769\pi\)
\(542\) 30.0000 30.0000i 1.28861 1.28861i
\(543\) 0 0
\(544\) −8.00000 −0.342997
\(545\) 15.0000 5.00000i 0.642529 0.214176i
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 18.0000 18.0000i 0.768922 0.768922i
\(549\) 0 0
\(550\) 6.00000 + 8.00000i 0.255841 + 0.341121i
\(551\) −42.0000 −1.78926
\(552\) 0 0
\(553\) 24.0000 24.0000i 1.02058 1.02058i
\(554\) −18.0000 18.0000i −0.764747 0.764747i
\(555\) 0 0
\(556\) −18.0000 + 18.0000i −0.763370 + 0.763370i
\(557\) 28.0000i 1.18640i 0.805056 + 0.593199i \(0.202135\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 12.0000 + 36.0000i 0.507093 + 1.52128i
\(561\) 0 0
\(562\) 16.0000 16.0000i 0.674919 0.674919i
\(563\) 18.0000i 0.758610i 0.925272 + 0.379305i \(0.123837\pi\)
−0.925272 + 0.379305i \(0.876163\pi\)
\(564\) 0 0
\(565\) 39.0000 13.0000i 1.64074 0.546914i
\(566\) −12.0000 12.0000i −0.504398 0.504398i
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −25.0000 + 25.0000i −1.04622 + 1.04622i −0.0473385 + 0.998879i \(0.515074\pi\)
−0.998879 + 0.0473385i \(0.984926\pi\)
\(572\) −4.00000 4.00000i −0.167248 0.167248i
\(573\) 0 0
\(574\) 24.0000i 1.00174i
\(575\) 1.00000 7.00000i 0.0417029 0.291920i
\(576\) 0 0
\(577\) 9.00000 9.00000i 0.374675 0.374675i −0.494502 0.869177i \(-0.664649\pi\)
0.869177 + 0.494502i \(0.164649\pi\)
\(578\) 15.0000 15.0000i 0.623918 0.623918i
\(579\) 0 0
\(580\) 14.0000 + 42.0000i 0.581318 + 1.74396i
\(581\) −6.00000 6.00000i −0.248922 0.248922i
\(582\) 0 0
\(583\) 8.00000 + 8.00000i 0.331326 + 0.331326i
\(584\) 12.0000i 0.496564i
\(585\) 0 0
\(586\) 12.0000 12.0000i 0.495715 0.495715i
\(587\) 2.00000i 0.0825488i 0.999148 + 0.0412744i \(0.0131418\pi\)
−0.999148 + 0.0412744i \(0.986858\pi\)
\(588\) 0 0
\(589\) −6.00000 6.00000i −0.247226 0.247226i
\(590\) 12.0000 + 6.00000i 0.494032 + 0.247016i
\(591\) 0 0
\(592\) 24.0000 0.986394
\(593\) −17.0000 17.0000i −0.698106 0.698106i 0.265896 0.964002i \(-0.414332\pi\)
−0.964002 + 0.265896i \(0.914332\pi\)
\(594\) 0 0
\(595\) 12.0000 + 6.00000i 0.491952 + 0.245976i
\(596\) 2.00000 + 2.00000i 0.0819232 + 0.0819232i
\(597\) 0 0
\(598\) 4.00000i 0.163572i
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 0 0
\(601\) 16.0000i 0.652654i −0.945257 0.326327i \(-0.894189\pi\)
0.945257 0.326327i \(-0.105811\pi\)
\(602\) 24.0000 0.978167
\(603\) 0 0
\(604\) 16.0000i 0.651031i
\(605\) −18.0000 9.00000i −0.731804 0.365902i
\(606\) 0 0
\(607\) 23.0000 + 23.0000i 0.933541 + 0.933541i 0.997925 0.0643840i \(-0.0205082\pi\)
−0.0643840 + 0.997925i \(0.520508\pi\)
\(608\) 24.0000 0.973329
\(609\) 0 0
\(610\) −2.00000 + 4.00000i −0.0809776 + 0.161955i
\(611\) 14.0000 + 14.0000i 0.566379 + 0.566379i
\(612\) 0 0
\(613\) 8.00000i 0.323117i 0.986863 + 0.161558i \(0.0516520\pi\)
−0.986863 + 0.161558i \(0.948348\pi\)
\(614\) 4.00000 + 4.00000i 0.161427 + 0.161427i
\(615\) 0 0
\(616\) 12.0000 + 12.0000i 0.483494 + 0.483494i
\(617\) −25.0000 25.0000i −1.00646 1.00646i −0.999979 0.00648312i \(-0.997936\pi\)
−0.00648312 0.999979i \(-0.502064\pi\)
\(618\) 0 0
\(619\) −7.00000 7.00000i −0.281354 0.281354i 0.552295 0.833649i \(-0.313752\pi\)
−0.833649 + 0.552295i \(0.813752\pi\)
\(620\) −4.00000 + 8.00000i −0.160644 + 0.321288i
\(621\) 0 0
\(622\) 16.0000 + 16.0000i 0.641542 + 0.641542i
\(623\) 18.0000 18.0000i 0.721155 0.721155i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −26.0000 −1.03917
\(627\) 0 0
\(628\) 40.0000 1.59617
\(629\) 6.00000 6.00000i 0.239236 0.239236i
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) −16.0000 + 16.0000i −0.636446 + 0.636446i
\(633\) 0 0
\(634\) 8.00000 8.00000i 0.317721 0.317721i
\(635\) −21.0000 + 7.00000i −0.833360 + 0.277787i
\(636\) 0 0
\(637\) 22.0000i 0.871672i
\(638\) 14.0000 + 14.0000i 0.554265 + 0.554265i
\(639\) 0 0
\(640\) −8.00000 24.0000i −0.316228 0.948683i
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 26.0000i 1.02534i −0.858586 0.512670i \(-0.828656\pi\)
0.858586 0.512670i \(-0.171344\pi\)
\(644\) 12.0000i 0.472866i
\(645\) 0 0
\(646\) 6.00000 6.00000i 0.236067 0.236067i
\(647\) 15.0000 15.0000i 0.589711 0.589711i −0.347842 0.937553i \(-0.613086\pi\)
0.937553 + 0.347842i \(0.113086\pi\)
\(648\) 0 0
\(649\) 6.00000 0.235521
\(650\) 2.00000 14.0000i 0.0784465 0.549125i
\(651\) 0 0
\(652\) −28.0000 −1.09656
\(653\) 2.00000 0.0782660 0.0391330 0.999234i \(-0.487540\pi\)
0.0391330 + 0.999234i \(0.487540\pi\)
\(654\) 0 0
\(655\) −21.0000 + 7.00000i −0.820538 + 0.273513i
\(656\) 16.0000i 0.624695i
\(657\) 0 0
\(658\) −42.0000 42.0000i −1.63733 1.63733i
\(659\) −11.0000 + 11.0000i −0.428499 + 0.428499i −0.888117 0.459618i \(-0.847986\pi\)
0.459618 + 0.888117i \(0.347986\pi\)
\(660\) 0 0
\(661\) −25.0000 25.0000i −0.972387 0.972387i 0.0272416 0.999629i \(-0.491328\pi\)
−0.999629 + 0.0272416i \(0.991328\pi\)
\(662\) 42.0000 1.63238
\(663\) 0 0
\(664\) 4.00000 + 4.00000i 0.155230 + 0.155230i
\(665\) −36.0000 18.0000i −1.39602 0.698010i
\(666\) 0 0
\(667\) 14.0000i 0.542082i
\(668\) 6.00000 + 6.00000i 0.232147 + 0.232147i
\(669\) 0 0
\(670\) 12.0000 4.00000i 0.463600 0.154533i
\(671\) 2.00000i 0.0772091i
\(672\) 0 0
\(673\) 1.00000 + 1.00000i 0.0385472 + 0.0385472i 0.726118 0.687570i \(-0.241323\pi\)
−0.687570 + 0.726118i \(0.741323\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 18.0000i 0.692308i
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) 66.0000i 2.53285i
\(680\) −8.00000 4.00000i −0.306786 0.153393i
\(681\) 0 0
\(682\) 4.00000i 0.153168i
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 27.0000 9.00000i 1.03162 0.343872i
\(686\) 24.0000i 0.916324i
\(687\) 0 0
\(688\) −16.0000 −0.609994
\(689\) 16.0000i 0.609551i
\(690\) 0 0
\(691\) 21.0000 + 21.0000i 0.798878 + 0.798878i 0.982919 0.184041i \(-0.0589179\pi\)
−0.184041 + 0.982919i \(0.558918\pi\)
\(692\) 12.0000i 0.456172i
\(693\) 0 0
\(694\) 2.00000 2.00000i 0.0759190 0.0759190i
\(695\) −27.0000 + 9.00000i −1.02417 + 0.341389i
\(696\) 0 0
\(697\) 4.00000 + 4.00000i 0.151511 + 0.151511i
\(698\) 6.00000i 0.227103i
\(699\) 0 0
\(700\) −6.00000 + 42.0000i −0.226779 + 1.58745i
\(701\) 13.0000 13.0000i 0.491003 0.491003i −0.417619 0.908622i \(-0.637135\pi\)
0.908622 + 0.417619i \(0.137135\pi\)
\(702\) 0 0
\(703\) −18.0000 + 18.0000i −0.678883 + 0.678883i
\(704\) −8.00000 8.00000i −0.301511 0.301511i
\(705\) 0 0
\(706\) 26.0000i 0.978523i
\(707\) −30.0000 −1.12827
\(708\) 0 0
\(709\) −1.00000 + 1.00000i −0.0375558 + 0.0375558i −0.725635 0.688080i \(-0.758454\pi\)
0.688080 + 0.725635i \(0.258454\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −12.0000 + 12.0000i −0.449719 + 0.449719i
\(713\) 2.00000 2.00000i 0.0749006 0.0749006i
\(714\) 0 0
\(715\) −2.00000 6.00000i −0.0747958 0.224387i
\(716\) 10.0000 + 10.0000i 0.373718 + 0.373718i
\(717\) 0 0
\(718\) −14.0000 + 14.0000i −0.522475 + 0.522475i
\(719\) −32.0000 −1.19340 −0.596699 0.802465i \(-0.703521\pi\)
−0.596699 + 0.802465i \(0.703521\pi\)
\(720\) 0 0
\(721\) 30.0000 1.11726
\(722\) 1.00000 1.00000i 0.0372161 0.0372161i
\(723\) 0 0
\(724\) −6.00000 + 6.00000i −0.222988 + 0.222988i
\(725\) −7.00000 + 49.0000i −0.259973 + 1.81981i
\(726\) 0 0
\(727\) −7.00000 + 7.00000i −0.259616 + 0.259616i −0.824898 0.565282i \(-0.808767\pi\)
0.565282 + 0.824898i \(0.308767\pi\)
\(728\) 24.0000i 0.889499i
\(729\) 0 0
\(730\) −6.00000 + 12.0000i −0.222070 + 0.444140i
\(731\) −4.00000 + 4.00000i −0.147945 + 0.147945i
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 42.0000i 1.55025i
\(735\) 0 0
\(736\) 8.00000i 0.294884i
\(737\) 4.00000 4.00000i 0.147342 0.147342i
\(738\) 0 0
\(739\) −21.0000 + 21.0000i −0.772497 + 0.772497i −0.978543 0.206045i \(-0.933941\pi\)
0.206045 + 0.978543i \(0.433941\pi\)
\(740\) 24.0000 + 12.0000i 0.882258 + 0.441129i
\(741\) 0 0
\(742\) 48.0000i 1.76214i
\(743\) −31.0000 31.0000i −1.13728 1.13728i −0.988936 0.148344i \(-0.952606\pi\)
−0.148344 0.988936i \(-0.547394\pi\)
\(744\) 0 0
\(745\) 1.00000 + 3.00000i 0.0366372 + 0.109911i
\(746\) −4.00000 + 4.00000i −0.146450 + 0.146450i
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) 18.0000 + 18.0000i 0.657706 + 0.657706i
\(750\) 0 0
\(751\) 50.0000i 1.82453i −0.409605 0.912263i \(-0.634333\pi\)
0.409605 0.912263i \(-0.365667\pi\)
\(752\) 28.0000 + 28.0000i 1.02105 + 1.02105i
\(753\) 0 0
\(754\) 28.0000i 1.01970i
\(755\) −8.00000 + 16.0000i −0.291150 + 0.582300i
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 30.0000i 1.08965i
\(759\) 0 0
\(760\) 24.0000 + 12.0000i 0.870572 + 0.435286i
\(761\) 40.0000i 1.45000i 0.688749 + 0.724999i \(0.258160\pi\)
−0.688749 + 0.724999i \(0.741840\pi\)
\(762\) 0 0
\(763\) 30.0000 1.08607
\(764\) −36.0000 −1.30243
\(765\) 0 0
\(766\) 10.0000 0.361315
\(767\) −6.00000 6.00000i −0.216647 0.216647i
\(768\) 0 0
\(769\) 4.00000i 0.144244i −0.997396 0.0721218i \(-0.977023\pi\)
0.997396 0.0721218i \(-0.0229770\pi\)
\(770\) 6.00000 + 18.0000i 0.216225 + 0.648675i
\(771\) 0 0
\(772\) 30.0000 30.0000i 1.07972 1.07972i
\(773\) 48.0000i 1.72644i −0.504828 0.863220i \(-0.668444\pi\)
0.504828 0.863220i \(-0.331556\pi\)
\(774\) 0 0
\(775\) −8.00000 + 6.00000i −0.287368 + 0.215526i
\(776\) 44.0000i 1.57951i
\(777\) 0 0
\(778\) 46.0000 1.64918
\(779\) −12.0000 12.0000i −0.429945 0.429945i
\(780\) 0 0
\(781\) 0 0
\(782\) 2.00000 + 2.00000i 0.0715199 + 0.0715199i
\(783\) 0 0
\(784\) 44.0000i 1.57143i
\(785\)