Properties

Label 72.9.e.b
Level $72$
Weight $9$
Character orbit 72.e
Analytic conductor $29.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,9,Mod(17,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.17");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 72.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.3312599244\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 16x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 85 \beta_1) q^{5} + (\beta_{3} - 204) q^{7} + ( - 18 \beta_{2} + 1156 \beta_1) q^{11} + (17 \beta_{3} - 5696) q^{13} + (118 \beta_{2} - 20689 \beta_1) q^{17} + ( - 136 \beta_{3} - 19024) q^{19}+ \cdots + (61370 \beta_{3} + 107212064) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 816 q^{7} - 22784 q^{13} - 76096 q^{19} - 983620 q^{25} - 4053616 q^{31} - 6354600 q^{37} - 18683744 q^{43} - 17916100 q^{49} - 45575840 q^{55} - 11751896 q^{61} - 26432416 q^{67} + 109088320 q^{73}+ \cdots + 428848256 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 16x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 9\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 144\nu^{3} + 3312\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 288\nu^{2} + 2304 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 144\beta_1 ) / 288 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 2304 ) / 288 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{2} + 368\beta_1 ) / 32 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
3.44572i
2.03151i
2.03151i
3.44572i
0 0 0 908.929i 0 −1319.42 0 0 0
17.2 0 0 0 668.512i 0 911.419 0 0 0
17.3 0 0 0 668.512i 0 911.419 0 0 0
17.4 0 0 0 908.929i 0 −1319.42 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.9.e.b 4
3.b odd 2 1 inner 72.9.e.b 4
4.b odd 2 1 144.9.e.e 4
12.b even 2 1 144.9.e.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.9.e.b 4 1.a even 1 1 trivial
72.9.e.b 4 3.b odd 2 1 inner
144.9.e.e 4 4.b odd 2 1
144.9.e.e 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 1273060T_{5}^{2} + 369214216900 \) acting on \(S_{9}^{\mathrm{new}}(72, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 369214216900 \) Copy content Toggle raw display
$7$ \( (T^{2} + 408 T - 1202544)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 39\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( (T^{2} + 11392 T - 327117824)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 60\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( (T^{2} + 38048 T - 22650070784)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 21\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 80\!\cdots\!04 \) Copy content Toggle raw display
$31$ \( (T^{2} + 2026808 T + 559470908176)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 3177300 T + 498097370340)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 93\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots + 21643614991936)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 62\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 50\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 35\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 246926516427164)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots - 883728835173824)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 309440223965440)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 43\!\cdots\!60)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 16\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 68\!\cdots\!96)^{2} \) Copy content Toggle raw display
show more
show less