Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(22.4917218349\) |
Analytic rank: | \(0\) |
Dimension: | \(14\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) |
Defining polynomial: |
\( x^{14} - 6 x^{13} - 52 x^{12} + 300 x^{11} - 1005 x^{10} - 23250 x^{9} + 349930 x^{8} + 2867784 x^{7} - 20463993 x^{6} - 78987210 x^{5} + 94608296 x^{4} + \cdots + 3813237677250 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{42}\cdot 3^{18} \) |
Twist minimal: | no (minimal twist has level 24) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{14} - 6 x^{13} - 52 x^{12} + 300 x^{11} - 1005 x^{10} - 23250 x^{9} + 349930 x^{8} + 2867784 x^{7} - 20463993 x^{6} - 78987210 x^{5} + 94608296 x^{4} + \cdots + 3813237677250 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 21691079 \nu^{13} - 270184387 \nu^{12} + 782417201 \nu^{11} + 1515938117 \nu^{10} - 53036710294 \nu^{9} - 206804744724 \nu^{8} + \cdots + 95\!\cdots\!30 ) / 41\!\cdots\!72 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 166890813 \nu^{13} + 2670091729 \nu^{12} - 17159192555 \nu^{11} + 71557375481 \nu^{10} + 211250383698 \nu^{9} + \cdots - 94\!\cdots\!82 ) / 41\!\cdots\!72 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 492629525 \nu^{13} - 5330686601 \nu^{12} + 12047622611 \nu^{11} - 39149525617 \nu^{10} + 861347903166 \nu^{9} + \cdots + 29\!\cdots\!38 ) / 41\!\cdots\!72 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 26782385 \nu^{13} + 628599829 \nu^{12} - 4700265751 \nu^{11} + 28473483741 \nu^{10} - 108938811238 \nu^{9} + \cdots - 53\!\cdots\!22 ) / 16\!\cdots\!72 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 136458837 \nu^{13} + 1839828681 \nu^{12} - 4871646099 \nu^{11} - 27635439951 \nu^{10} + 295776184770 \nu^{9} + \cdots - 55\!\cdots\!34 ) / 69\!\cdots\!12 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 907013959 \nu^{13} + 7107775043 \nu^{12} + 14703813455 \nu^{11} - 626741066437 \nu^{10} + 4316482827926 \nu^{9} + \cdots - 59\!\cdots\!14 ) / 41\!\cdots\!72 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 1068982365 \nu^{13} + 23519404401 \nu^{12} - 172128800203 \nu^{11} + 271435164313 \nu^{10} + 4040669859986 \nu^{9} + \cdots - 41\!\cdots\!02 ) / 41\!\cdots\!72 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 1197811243 \nu^{13} + 11406180407 \nu^{12} - 29346275821 \nu^{11} + 4316955983 \nu^{10} + 2168133588542 \nu^{9} + \cdots - 51\!\cdots\!50 ) / 41\!\cdots\!72 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 149795513 \nu^{13} + 1775346621 \nu^{12} - 1910006095 \nu^{11} - 26079690555 \nu^{10} + 399012730218 \nu^{9} + \cdots - 75\!\cdots\!38 ) / 52\!\cdots\!84 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 172051509 \nu^{13} - 2404852809 \nu^{12} + 7188831539 \nu^{11} + 65785727119 \nu^{10} - 1183451299138 \nu^{9} + \cdots + 88\!\cdots\!18 ) / 52\!\cdots\!84 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 1513426675 \nu^{13} + 17693523359 \nu^{12} + 18463120539 \nu^{11} - 613756439561 \nu^{10} + 1692810357390 \nu^{9} + \cdots - 10\!\cdots\!22 ) / 41\!\cdots\!72 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 59960501 \nu^{13} + 905146077 \nu^{12} - 3961879171 \nu^{11} + 12082154925 \nu^{10} - 16745842566 \nu^{9} + \cdots - 44\!\cdots\!10 ) / 13\!\cdots\!96 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 2715351137 \nu^{13} - 33639911173 \nu^{12} + 83405896423 \nu^{11} + 519337332915 \nu^{10} - 9612896802170 \nu^{9} + \cdots + 11\!\cdots\!06 ) / 41\!\cdots\!72 \)
|
\(\nu\) | \(=\) |
\( ( - 9 \beta_{13} + 9 \beta_{12} - 9 \beta_{10} - 36 \beta_{9} - 16 \beta_{7} - 7 \beta_{6} + 18 \beta_{5} + 2 \beta_{4} + 13 \beta_{3} + 7 \beta_{2} - 74 \beta _1 + 2226 ) / 5184 \)
|
\(\nu^{2}\) | \(=\) |
\( ( - 27 \beta_{13} + 135 \beta_{12} - 72 \beta_{11} + 81 \beta_{10} + 9 \beta_{9} - 32 \beta_{7} - 5 \beta_{6} + 214 \beta_{5} - 86 \beta_{4} + 323 \beta_{3} - 103 \beta_{2} + 1058 \beta _1 + 51810 ) / 5184 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 135 \beta_{13} + 891 \beta_{12} - 792 \beta_{11} - 243 \beta_{10} - 387 \beta_{9} + 112 \beta_{7} - 1481 \beta_{6} + 1614 \beta_{5} - 1346 \beta_{4} - 1297 \beta_{3} - 5971 \beta_{2} - 20686 \beta _1 + 91374 ) / 5184 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 4533 \beta_{13} + 1551 \beta_{12} + 168 \beta_{11} - 1767 \beta_{10} - 393 \beta_{9} + 2592 \beta_{8} - 672 \beta_{7} + 267 \beta_{6} + 3638 \beta_{5} - 54 \beta_{4} + 6363 \beta_{3} - 5343 \beta_{2} + \cdots + 1360866 ) / 1728 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 28233 \beta_{13} + 35811 \beta_{12} + 79128 \beta_{11} - 13131 \beta_{10} - 67005 \beta_{9} + 137376 \beta_{8} + 18672 \beta_{7} - 57 \beta_{6} - 99794 \beta_{5} + 20958 \beta_{4} + \cdots + 59148270 ) / 5184 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 375219 \beta_{13} + 427977 \beta_{12} + 10008 \beta_{11} - 224721 \beta_{10} + 188289 \beta_{9} + 1218240 \beta_{8} - 84064 \beta_{7} + 441005 \beta_{6} + 193274 \beta_{5} + \cdots - 134979234 ) / 5184 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 2045673 \beta_{13} + 1855827 \beta_{12} - 165384 \beta_{11} + 2623365 \beta_{10} + 3234879 \beta_{9} + 8999424 \beta_{8} + 2969328 \beta_{7} + 1948359 \beta_{6} + \cdots - 5879743938 ) / 5184 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 8231313 \beta_{13} + 2397795 \beta_{12} - 1354488 \beta_{11} + 990309 \beta_{10} + 17113947 \beta_{9} + 11042784 \beta_{8} + 13734368 \beta_{7} + 8425967 \beta_{6} + \cdots - 5898236454 ) / 1728 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 154797201 \beta_{13} - 42135381 \beta_{12} + 133399224 \beta_{11} - 169790643 \beta_{10} + 350444007 \beta_{9} + 255817440 \beta_{8} + 143369456 \beta_{7} + \cdots - 89174752386 ) / 5184 \)
|
\(\nu^{10}\) | \(=\) |
\( ( 90051723 \beta_{13} - 30935439 \beta_{12} + 1785733272 \beta_{11} - 219360825 \beta_{10} + 5588196705 \beta_{9} + 2239042176 \beta_{8} - 311056736 \beta_{7} + \cdots + 741190189038 ) / 5184 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 16746813639 \beta_{13} + 5288240547 \beta_{12} + 8044070328 \beta_{11} + 452918709 \beta_{10} + 51171467895 \beta_{9} - 13418955072 \beta_{8} + \cdots - 4174643792514 ) / 5184 \)
|
\(\nu^{12}\) | \(=\) |
\( ( - 14070738661 \beta_{13} + 6573049441 \beta_{12} + 5758500056 \beta_{11} + 5460206711 \beta_{10} + 35427013849 \beta_{9} - 51469850016 \beta_{8} + \cdots - 4268598731138 ) / 576 \)
|
\(\nu^{13}\) | \(=\) |
\( ( - 1398515170815 \beta_{13} + 972388573371 \beta_{12} + 1256975130168 \beta_{11} - 339276246147 \beta_{10} + 759639983895 \beta_{9} + \cdots + 230969302740414 ) / 5184 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
−9.38113 | − | 6.32411i | 0 | 48.0111 | + | 118.655i | 425.308i | 0 | 1664.03 | 299.987 | − | 1416.74i | 0 | 2689.70 | − | 3989.87i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
37.2 | −9.38113 | + | 6.32411i | 0 | 48.0111 | − | 118.655i | − | 425.308i | 0 | 1664.03 | 299.987 | + | 1416.74i | 0 | 2689.70 | + | 3989.87i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
37.3 | −8.24265 | − | 7.74976i | 0 | 7.88255 | + | 127.757i | − | 76.0929i | 0 | −222.735 | 925.113 | − | 1114.14i | 0 | −589.701 | + | 627.207i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
37.4 | −8.24265 | + | 7.74976i | 0 | 7.88255 | − | 127.757i | 76.0929i | 0 | −222.735 | 925.113 | + | 1114.14i | 0 | −589.701 | − | 627.207i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.5 | −3.06293 | − | 10.8912i | 0 | −109.237 | + | 66.7181i | 23.0228i | 0 | −1547.56 | 1061.23 | + | 985.368i | 0 | 250.747 | − | 70.5175i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.6 | −3.06293 | + | 10.8912i | 0 | −109.237 | − | 66.7181i | − | 23.0228i | 0 | −1547.56 | 1061.23 | − | 985.368i | 0 | 250.747 | + | 70.5175i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
37.7 | 2.60309 | − | 11.0102i | 0 | −114.448 | − | 57.3210i | 468.400i | 0 | 81.2421 | −929.033 | + | 1110.88i | 0 | 5157.17 | + | 1219.29i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.8 | 2.60309 | + | 11.0102i | 0 | −114.448 | + | 57.3210i | − | 468.400i | 0 | 81.2421 | −929.033 | − | 1110.88i | 0 | 5157.17 | − | 1219.29i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
37.9 | 6.09641 | − | 9.53067i | 0 | −53.6675 | − | 116.206i | − | 137.155i | 0 | 808.153 | −1434.70 | − | 196.951i | 0 | −1307.18 | − | 836.155i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
37.10 | 6.09641 | + | 9.53067i | 0 | −53.6675 | + | 116.206i | 137.155i | 0 | 808.153 | −1434.70 | + | 196.951i | 0 | −1307.18 | + | 836.155i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.11 | 7.69468 | − | 8.29409i | 0 | −9.58387 | − | 127.641i | − | 455.347i | 0 | −743.502 | −1132.41 | − | 902.665i | 0 | −3776.69 | − | 3503.75i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
37.12 | 7.69468 | + | 8.29409i | 0 | −9.58387 | + | 127.641i | 455.347i | 0 | −743.502 | −1132.41 | + | 902.665i | 0 | −3776.69 | + | 3503.75i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.13 | 11.2925 | − | 0.691979i | 0 | 127.042 | − | 15.6284i | 124.215i | 0 | 646.373 | 1423.81 | − | 264.394i | 0 | 85.9543 | + | 1402.70i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
37.14 | 11.2925 | + | 0.691979i | 0 | 127.042 | + | 15.6284i | − | 124.215i | 0 | 646.373 | 1423.81 | + | 264.394i | 0 | 85.9543 | − | 1402.70i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.8.d.d | 14 | |
3.b | odd | 2 | 1 | 24.8.d.a | ✓ | 14 | |
4.b | odd | 2 | 1 | 288.8.d.d | 14 | ||
8.b | even | 2 | 1 | inner | 72.8.d.d | 14 | |
8.d | odd | 2 | 1 | 288.8.d.d | 14 | ||
12.b | even | 2 | 1 | 96.8.d.a | 14 | ||
24.f | even | 2 | 1 | 96.8.d.a | 14 | ||
24.h | odd | 2 | 1 | 24.8.d.a | ✓ | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
24.8.d.a | ✓ | 14 | 3.b | odd | 2 | 1 | |
24.8.d.a | ✓ | 14 | 24.h | odd | 2 | 1 | |
72.8.d.d | 14 | 1.a | even | 1 | 1 | trivial | |
72.8.d.d | 14 | 8.b | even | 2 | 1 | inner | |
96.8.d.a | 14 | 12.b | even | 2 | 1 | ||
96.8.d.a | 14 | 24.f | even | 2 | 1 | ||
288.8.d.d | 14 | 4.b | odd | 2 | 1 | ||
288.8.d.d | 14 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{14} + 648188 T_{5}^{12} + 147837846096 T_{5}^{10} + \cdots + 73\!\cdots\!00 \)
acting on \(S_{8}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{14} + \cdots + 562949953421312 \)
$3$
\( T^{14} \)
$5$
\( T^{14} + 648188 T^{12} + \cdots + 73\!\cdots\!00 \)
$7$
\( (T^{7} - 686 T^{6} + \cdots + 18\!\cdots\!56)^{2} \)
$11$
\( T^{14} + 146207744 T^{12} + \cdots + 92\!\cdots\!00 \)
$13$
\( T^{14} + 491467248 T^{12} + \cdots + 82\!\cdots\!64 \)
$17$
\( (T^{7} - 1454 T^{6} + \cdots - 20\!\cdots\!36)^{2} \)
$19$
\( T^{14} + 5540192496 T^{12} + \cdots + 23\!\cdots\!76 \)
$23$
\( (T^{7} - 71708 T^{6} + \cdots + 23\!\cdots\!68)^{2} \)
$29$
\( T^{14} + 109525673372 T^{12} + \cdots + 30\!\cdots\!76 \)
$31$
\( (T^{7} + 44734 T^{6} + \cdots - 33\!\cdots\!12)^{2} \)
$37$
\( T^{14} + 473007845568 T^{12} + \cdots + 88\!\cdots\!76 \)
$41$
\( (T^{7} - 220642 T^{6} + \cdots - 38\!\cdots\!28)^{2} \)
$43$
\( T^{14} + 2638324171248 T^{12} + \cdots + 14\!\cdots\!64 \)
$47$
\( (T^{7} - 528204 T^{6} + \cdots - 43\!\cdots\!56)^{2} \)
$53$
\( T^{14} + 9574301782364 T^{12} + \cdots + 98\!\cdots\!24 \)
$59$
\( T^{14} + 25057896090608 T^{12} + \cdots + 33\!\cdots\!36 \)
$61$
\( T^{14} + 17284536099072 T^{12} + \cdots + 54\!\cdots\!00 \)
$67$
\( T^{14} + 41923367956080 T^{12} + \cdots + 45\!\cdots\!96 \)
$71$
\( (T^{7} + 2586348 T^{6} + \cdots + 12\!\cdots\!68)^{2} \)
$73$
\( (T^{7} + 2723098 T^{6} + \cdots - 49\!\cdots\!48)^{2} \)
$79$
\( (T^{7} + 7186774 T^{6} + \cdots + 64\!\cdots\!80)^{2} \)
$83$
\( T^{14} + 231376940860160 T^{12} + \cdots + 31\!\cdots\!64 \)
$89$
\( (T^{7} - 5976310 T^{6} + \cdots + 78\!\cdots\!80)^{2} \)
$97$
\( (T^{7} - 66866 T^{6} + \cdots - 18\!\cdots\!04)^{2} \)
show more
show less