Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(22.4917218349\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-2}) \) |
Defining polynomial: |
\( x^{2} + 2 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
− | 11.3137i | 0 | −128.000 | − | 557.200i | 0 | −754.000 | 1448.15i | 0 | −6304.00 | ||||||||||||||||||||||
37.2 | 11.3137i | 0 | −128.000 | 557.200i | 0 | −754.000 | − | 1448.15i | 0 | −6304.00 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
24.h | odd | 2 | 1 | CM by \(\Q(\sqrt{-6}) \) |
3.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.8.d.a | ✓ | 2 |
3.b | odd | 2 | 1 | inner | 72.8.d.a | ✓ | 2 |
4.b | odd | 2 | 1 | 288.8.d.a | 2 | ||
8.b | even | 2 | 1 | inner | 72.8.d.a | ✓ | 2 |
8.d | odd | 2 | 1 | 288.8.d.a | 2 | ||
12.b | even | 2 | 1 | 288.8.d.a | 2 | ||
24.f | even | 2 | 1 | 288.8.d.a | 2 | ||
24.h | odd | 2 | 1 | CM | 72.8.d.a | ✓ | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.8.d.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
72.8.d.a | ✓ | 2 | 3.b | odd | 2 | 1 | inner |
72.8.d.a | ✓ | 2 | 8.b | even | 2 | 1 | inner |
72.8.d.a | ✓ | 2 | 24.h | odd | 2 | 1 | CM |
288.8.d.a | 2 | 4.b | odd | 2 | 1 | ||
288.8.d.a | 2 | 8.d | odd | 2 | 1 | ||
288.8.d.a | 2 | 12.b | even | 2 | 1 | ||
288.8.d.a | 2 | 24.f | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 310472 \)
acting on \(S_{8}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 128 \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 310472 \)
$7$
\( (T + 754)^{2} \)
$11$
\( T^{2} + 45239072 \)
$13$
\( T^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} \)
$23$
\( T^{2} \)
$29$
\( T^{2} + 63383664968 \)
$31$
\( (T - 331370)^{2} \)
$37$
\( T^{2} \)
$41$
\( T^{2} \)
$43$
\( T^{2} \)
$47$
\( T^{2} \)
$53$
\( T^{2} + 57385944200 \)
$59$
\( T^{2} + 2191881968768 \)
$61$
\( T^{2} \)
$67$
\( T^{2} \)
$71$
\( T^{2} \)
$73$
\( (T + 2819362)^{2} \)
$79$
\( (T + 7561270)^{2} \)
$83$
\( T^{2} + 69942559954208 \)
$89$
\( T^{2} \)
$97$
\( (T + 11745214)^{2} \)
show more
show less