Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(16.5638940206\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
Defining polynomial: |
\( x^{12} + 78x^{10} + 3408x^{8} + 73216x^{6} + 13959168x^{4} + 1308622848x^{2} + 68719476736 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{30}\cdot 3^{6} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 78x^{10} + 3408x^{8} + 73216x^{6} + 13959168x^{4} + 1308622848x^{2} + 68719476736 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{11} + 78\nu^{9} + 3408\nu^{7} + 73216\nu^{5} + 13959168\nu^{3} + 1308622848\nu ) / 1073741824 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 37 \nu^{11} - 17222 \nu^{9} - 720016 \nu^{7} + 22882816 \nu^{5} + 46324449280 \nu^{3} + 433556815872 \nu ) / 11811160064 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{10} - 78\nu^{8} - 3408\nu^{6} - 73216\nu^{4} - 13959168\nu^{2} - 1090519040 ) / 16777216 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -7\nu^{11} - 546\nu^{9} - 23856\nu^{7} - 512512\nu^{5} - 97714176\nu^{3} + 25199378432\nu ) / 1073741824 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -\nu^{10} - 78\nu^{8} - 3408\nu^{6} - 73216\nu^{4} + 254476288\nu^{2} + 2399141888 ) / 16777216 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{11} - 1102\nu^{9} + 47792\nu^{7} - 1728000\nu^{5} - 162332672\nu^{3} - 14998831104\nu ) / 134217728 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -15\nu^{10} + 1390\nu^{8} - 48048\nu^{6} + 2776576\nu^{4} - 125763584\nu^{2} + 8908701696 ) / 92274688 \)
|
\(\beta_{8}\) | \(=\) |
\( ( -43\nu^{11} + 230\nu^{9} + 1936\nu^{7} - 9546240\nu^{5} - 499318784\nu^{3} - 11408506880\nu ) / 2952790016 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 71\nu^{10} + 930\nu^{8} - 51920\nu^{6} + 21869056\nu^{4} + 872873984\nu^{2} + 40214986752 ) / 92274688 \)
|
\(\beta_{10}\) | \(=\) |
\( ( -65\nu^{11} - 974\nu^{9} + 97968\nu^{7} + 9200128\nu^{5} - 607453184\nu^{3} - 27883732992\nu ) / 1073741824 \)
|
\(\beta_{11}\) | \(=\) |
\( ( -303\nu^{10} - 11346\nu^{8} + 712272\nu^{6} + 39091712\nu^{4} - 1438318592\nu^{2} - 202651992064 ) / 184549376 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{4} + 7\beta_1 ) / 32 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{5} - \beta_{3} - 208 ) / 16 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 4\beta_{8} - 7\beta_{4} + 4\beta_{2} + 27\beta_1 ) / 16 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 8\beta_{11} + 24\beta_{9} + 24\beta_{7} - 7\beta_{5} + 31\beta_{3} - 976 ) / 8 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 320\beta_{10} - 1436\beta_{8} - 64\beta_{6} - 19\beta_{4} - 28\beta_{2} - 2393\beta_1 ) / 8 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 328\beta_{11} - 296\beta_{9} - 1320\beta_{7} - 259\beta_{5} - 8997\beta_{3} + 68848 ) / 4 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 5952\beta_{10} + 10612\beta_{8} + 4544\beta_{6} - 1423\beta_{4} + 756\beta_{2} + 581747\beta_1 ) / 4 \)
|
\(\nu^{8}\) | \(=\) |
\( ( -3224\beta_{11} - 8904\beta_{9} + 63800\beta_{7} - 1279\beta_{5} - 198857\beta_{3} - 18562128 ) / 2 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 19520\beta_{10} + 772996\beta_{8} - 122688\beta_{6} - 736699\beta_{4} - 42236\beta_{2} + 7075183\beta_1 ) / 2 \)
|
\(\nu^{10}\) | \(=\) |
\( -226936\beta_{11} + 379800\beta_{9} - 1583208\beta_{7} - 537835\beta_{5} - 767613\beta_{3} - 234853008 \)
|
\(\nu^{11}\) | \(=\) |
\( - 8761024 \beta_{10} - 29535788 \beta_{8} + 1499072 \beta_{6} - 4669783 \beta_{4} - 2230444 \beta_{2} + 14244635 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−7.38480 | − | 3.07648i | 0 | 45.0705 | + | 45.4384i | − | 70.4379i | 0 | 87.7768i | −193.046 | − | 474.212i | 0 | −216.701 | + | 520.170i | |||||||||||||||||||||||||||||||||||||||||||||
19.2 | −7.38480 | + | 3.07648i | 0 | 45.0705 | − | 45.4384i | 70.4379i | 0 | − | 87.7768i | −193.046 | + | 474.212i | 0 | −216.701 | − | 520.170i | ||||||||||||||||||||||||||||||||||||||||||||||
19.3 | −4.24448 | − | 6.78118i | 0 | −27.9688 | + | 57.5651i | 206.098i | 0 | 210.403i | 509.073 | − | 54.6722i | 0 | 1397.59 | − | 874.779i | |||||||||||||||||||||||||||||||||||||||||||||||
19.4 | −4.24448 | + | 6.78118i | 0 | −27.9688 | − | 57.5651i | − | 206.098i | 0 | − | 210.403i | 509.073 | + | 54.6722i | 0 | 1397.59 | + | 874.779i | |||||||||||||||||||||||||||||||||||||||||||||
19.5 | −1.98725 | − | 7.74925i | 0 | −56.1017 | + | 30.7994i | − | 106.706i | 0 | − | 614.112i | 350.160 | + | 373.539i | 0 | −826.887 | + | 212.051i | |||||||||||||||||||||||||||||||||||||||||||||
19.6 | −1.98725 | + | 7.74925i | 0 | −56.1017 | − | 30.7994i | 106.706i | 0 | 614.112i | 350.160 | − | 373.539i | 0 | −826.887 | − | 212.051i | |||||||||||||||||||||||||||||||||||||||||||||||
19.7 | 1.98725 | − | 7.74925i | 0 | −56.1017 | − | 30.7994i | − | 106.706i | 0 | 614.112i | −350.160 | + | 373.539i | 0 | −826.887 | − | 212.051i | ||||||||||||||||||||||||||||||||||||||||||||||
19.8 | 1.98725 | + | 7.74925i | 0 | −56.1017 | + | 30.7994i | 106.706i | 0 | − | 614.112i | −350.160 | − | 373.539i | 0 | −826.887 | + | 212.051i | ||||||||||||||||||||||||||||||||||||||||||||||
19.9 | 4.24448 | − | 6.78118i | 0 | −27.9688 | − | 57.5651i | 206.098i | 0 | − | 210.403i | −509.073 | − | 54.6722i | 0 | 1397.59 | + | 874.779i | ||||||||||||||||||||||||||||||||||||||||||||||
19.10 | 4.24448 | + | 6.78118i | 0 | −27.9688 | + | 57.5651i | − | 206.098i | 0 | 210.403i | −509.073 | + | 54.6722i | 0 | 1397.59 | − | 874.779i | ||||||||||||||||||||||||||||||||||||||||||||||
19.11 | 7.38480 | − | 3.07648i | 0 | 45.0705 | − | 45.4384i | − | 70.4379i | 0 | − | 87.7768i | 193.046 | − | 474.212i | 0 | −216.701 | − | 520.170i | |||||||||||||||||||||||||||||||||||||||||||||
19.12 | 7.38480 | + | 3.07648i | 0 | 45.0705 | + | 45.4384i | 70.4379i | 0 | 87.7768i | 193.046 | + | 474.212i | 0 | −216.701 | + | 520.170i | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.7.b.d | ✓ | 12 |
3.b | odd | 2 | 1 | inner | 72.7.b.d | ✓ | 12 |
4.b | odd | 2 | 1 | 288.7.b.c | 12 | ||
8.b | even | 2 | 1 | 288.7.b.c | 12 | ||
8.d | odd | 2 | 1 | inner | 72.7.b.d | ✓ | 12 |
12.b | even | 2 | 1 | 288.7.b.c | 12 | ||
24.f | even | 2 | 1 | inner | 72.7.b.d | ✓ | 12 |
24.h | odd | 2 | 1 | 288.7.b.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.7.b.d | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
72.7.b.d | ✓ | 12 | 3.b | odd | 2 | 1 | inner |
72.7.b.d | ✓ | 12 | 8.d | odd | 2 | 1 | inner |
72.7.b.d | ✓ | 12 | 24.f | even | 2 | 1 | inner |
288.7.b.c | 12 | 4.b | odd | 2 | 1 | ||
288.7.b.c | 12 | 8.b | even | 2 | 1 | ||
288.7.b.c | 12 | 12.b | even | 2 | 1 | ||
288.7.b.c | 12 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{6} + 58824T_{5}^{4} + 750878400T_{5}^{2} + 2399578560000 \)
acting on \(S_{7}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 78 T^{10} + \cdots + 68719476736 \)
$3$
\( T^{12} \)
$5$
\( (T^{6} + 58824 T^{4} + \cdots + 2399578560000)^{2} \)
$7$
\( (T^{6} + 429108 T^{4} + \cdots + 128634653983680)^{2} \)
$11$
\( (T^{6} - 7021536 T^{4} + \cdots - 14\!\cdots\!20)^{2} \)
$13$
\( (T^{6} + 16498128 T^{4} + \cdots + 17\!\cdots\!20)^{2} \)
$17$
\( (T^{6} - 85317504 T^{4} + \cdots - 51\!\cdots\!80)^{2} \)
$19$
\( (T^{3} - 984 T^{2} + \cdots + 40086711808)^{4} \)
$23$
\( (T^{6} + 405312000 T^{4} + \cdots + 17\!\cdots\!04)^{2} \)
$29$
\( (T^{6} + 1501983624 T^{4} + \cdots + 41\!\cdots\!00)^{2} \)
$31$
\( (T^{6} + 1586576052 T^{4} + \cdots + 28\!\cdots\!80)^{2} \)
$37$
\( (T^{6} + 6158858832 T^{4} + \cdots + 91\!\cdots\!80)^{2} \)
$41$
\( (T^{6} - 7294871424 T^{4} + \cdots - 12\!\cdots\!80)^{2} \)
$43$
\( (T^{3} + 85176 T^{2} + \cdots - 657572380382720)^{4} \)
$47$
\( (T^{6} + 9235517952 T^{4} + \cdots + 81\!\cdots\!04)^{2} \)
$53$
\( (T^{6} + 43574252040 T^{4} + \cdots + 44\!\cdots\!04)^{2} \)
$59$
\( (T^{6} - 149144563584 T^{4} + \cdots - 35\!\cdots\!80)^{2} \)
$61$
\( (T^{6} + 212406839760 T^{4} + \cdots + 18\!\cdots\!00)^{2} \)
$67$
\( (T^{3} + 240528 T^{2} + \cdots - 18\!\cdots\!40)^{4} \)
$71$
\( (T^{6} + 381073489920 T^{4} + \cdots + 91\!\cdots\!00)^{2} \)
$73$
\( (T^{3} + 267390 T^{2} + \cdots - 19\!\cdots\!00)^{4} \)
$79$
\( (T^{6} + 692559891828 T^{4} + \cdots + 38\!\cdots\!20)^{2} \)
$83$
\( (T^{6} - 844970997984 T^{4} + \cdots - 11\!\cdots\!20)^{2} \)
$89$
\( (T^{6} - 3016772427264 T^{4} + \cdots - 62\!\cdots\!20)^{2} \)
$97$
\( (T^{3} + 21738 T^{2} + \cdots - 71\!\cdots\!00)^{4} \)
show more
show less