Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(16.5638940206\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
Defining polynomial: |
\( x^{12} - 2 x^{11} + 31 x^{10} - 1286 x^{9} + 7702 x^{8} - 174032 x^{7} + 1952056 x^{6} - 6345392 x^{5} + 7695616 x^{4} - 6850848 x^{3} - 19274256 x^{2} + \cdots + 767595744 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{30}\cdot 3^{11} \) |
Twist minimal: | no (minimal twist has level 24) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 2 x^{11} + 31 x^{10} - 1286 x^{9} + 7702 x^{8} - 174032 x^{7} + 1952056 x^{6} - 6345392 x^{5} + 7695616 x^{4} - 6850848 x^{3} - 19274256 x^{2} + \cdots + 767595744 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 12\!\cdots\!35 \nu^{11} + \cdots - 14\!\cdots\!36 ) / 39\!\cdots\!92 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 31\!\cdots\!93 \nu^{11} + \cdots - 43\!\cdots\!40 ) / 75\!\cdots\!48 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 70\!\cdots\!15 \nu^{11} + \cdots + 56\!\cdots\!96 ) / 75\!\cdots\!48 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 46\!\cdots\!77 \nu^{11} + \cdots - 80\!\cdots\!88 ) / 37\!\cdots\!24 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 60\!\cdots\!33 \nu^{11} + \cdots + 12\!\cdots\!52 ) / 39\!\cdots\!92 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 55\!\cdots\!57 \nu^{11} + \cdots - 66\!\cdots\!08 ) / 18\!\cdots\!12 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 12\!\cdots\!36 \nu^{11} + \cdots + 40\!\cdots\!68 ) / 37\!\cdots\!24 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 56\!\cdots\!77 \nu^{11} + \cdots + 10\!\cdots\!88 ) / 75\!\cdots\!48 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 19\!\cdots\!99 \nu^{11} + \cdots - 37\!\cdots\!56 ) / 18\!\cdots\!12 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 13\!\cdots\!83 \nu^{11} + \cdots + 79\!\cdots\!16 ) / 12\!\cdots\!08 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 13\!\cdots\!41 \nu^{11} + \cdots - 25\!\cdots\!80 ) / 75\!\cdots\!48 \)
|
\(\nu\) | \(=\) |
\( ( 3\beta_{11} - 2\beta_{10} - 3\beta_{9} - 6\beta_{6} + 12\beta_{5} + 3\beta_{2} - 24\beta _1 + 42 ) / 288 \)
|
\(\nu^{2}\) | \(=\) |
\( ( - 3 \beta_{11} + 46 \beta_{10} - 9 \beta_{9} - 12 \beta_{8} - 36 \beta_{7} + 54 \beta_{6} - 60 \beta_{5} + 48 \beta_{4} - 103 \beta_{2} + 944 \beta _1 - 1206 ) / 288 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 33 \beta_{11} - 42 \beta_{10} + 57 \beta_{9} - 168 \beta_{8} + 72 \beta_{7} + 54 \beta_{6} + 741 \beta_{5} - 204 \beta_{4} - 99 \beta_{3} + 448 \beta_{2} - 1283 \beta _1 + 28965 ) / 96 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 3177 \beta_{11} + 3910 \beta_{10} - 2373 \beta_{9} + 5220 \beta_{8} + 2412 \beta_{7} - 8346 \beta_{6} - 6414 \beta_{5} - 3720 \beta_{4} + 2502 \beta_{3} - 4749 \beta_{2} + 165894 \beta _1 - 427620 ) / 288 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 16077 \beta_{11} - 20114 \beta_{10} - 1467 \beta_{9} + 4536 \beta_{8} - 55128 \beta_{7} + 84918 \beta_{6} - 231765 \beta_{5} + 73308 \beta_{4} - 261 \beta_{3} + 193322 \beta_{2} + \cdots + 14919327 ) / 288 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 62829 \beta_{11} - 200466 \beta_{10} - 26409 \beta_{9} - 249468 \beta_{8} + 129228 \beta_{7} - 200178 \beta_{6} + 1779342 \beta_{5} - 283608 \beta_{4} - 9726 \beta_{3} - 197725 \beta_{2} + \cdots - 35834472 ) / 96 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 127233 \beta_{11} + 15815530 \beta_{10} - 1056489 \beta_{9} + 6833112 \beta_{8} - 2822136 \beta_{7} + 2670258 \beta_{6} - 41880759 \beta_{5} + 3208308 \beta_{4} + \cdots - 1128380043 ) / 288 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 42965283 \beta_{11} - 124959842 \beta_{10} + 43704567 \beta_{9} - 61508076 \beta_{8} + 5987964 \beta_{7} + 91189950 \beta_{6} + 84916578 \beta_{5} + \cdots + 39833211204 ) / 288 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 108834915 \beta_{11} - 14175762 \beta_{10} - 80984555 \beta_{9} + 54900152 \beta_{8} + 86200488 \beta_{7} - 301366266 \beta_{6} + 469025271 \beta_{5} + \cdots - 43230321565 ) / 32 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 7581327273 \beta_{11} + 16323434890 \beta_{10} + 1920596565 \beta_{9} + 4891236204 \beta_{8} - 17886519804 \beta_{7} + 31446709578 \beta_{6} + \cdots + 1360648800456 ) / 288 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 16616171415 \beta_{11} - 285454786022 \beta_{10} + 63370238031 \beta_{9} - 239403789192 \beta_{8} + 158088636648 \beta_{7} - 80548435134 \beta_{6} + \cdots + 23495738443101 ) / 288 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−7.97364 | − | 0.648923i | 0 | 63.1578 | + | 10.3486i | 232.265i | 0 | 483.645i | −496.882 | − | 123.500i | 0 | 150.722 | − | 1852.00i | ||||||||||||||||||||||||||||||||||||||||||||||
19.2 | −7.97364 | + | 0.648923i | 0 | 63.1578 | − | 10.3486i | − | 232.265i | 0 | − | 483.645i | −496.882 | + | 123.500i | 0 | 150.722 | + | 1852.00i | |||||||||||||||||||||||||||||||||||||||||||||
19.3 | −7.11414 | − | 3.65910i | 0 | 37.2219 | + | 52.0627i | − | 87.0704i | 0 | 355.505i | −74.2991 | − | 506.580i | 0 | −318.599 | + | 619.431i | ||||||||||||||||||||||||||||||||||||||||||||||
19.4 | −7.11414 | + | 3.65910i | 0 | 37.2219 | − | 52.0627i | 87.0704i | 0 | − | 355.505i | −74.2991 | + | 506.580i | 0 | −318.599 | − | 619.431i | ||||||||||||||||||||||||||||||||||||||||||||||
19.5 | −1.98950 | − | 7.74867i | 0 | −56.0838 | + | 30.8319i | − | 82.3007i | 0 | 351.467i | 350.485 | + | 373.235i | 0 | −637.721 | + | 163.737i | ||||||||||||||||||||||||||||||||||||||||||||||
19.6 | −1.98950 | + | 7.74867i | 0 | −56.0838 | − | 30.8319i | 82.3007i | 0 | − | 351.467i | 350.485 | − | 373.235i | 0 | −637.721 | − | 163.737i | ||||||||||||||||||||||||||||||||||||||||||||||
19.7 | −0.278171 | − | 7.99516i | 0 | −63.8452 | + | 4.44805i | 111.403i | 0 | − | 106.838i | 53.3228 | + | 509.216i | 0 | 890.684 | − | 30.9891i | ||||||||||||||||||||||||||||||||||||||||||||||
19.8 | −0.278171 | + | 7.99516i | 0 | −63.8452 | − | 4.44805i | − | 111.403i | 0 | 106.838i | 53.3228 | − | 509.216i | 0 | 890.684 | + | 30.9891i | ||||||||||||||||||||||||||||||||||||||||||||||
19.9 | 4.86506 | − | 6.35069i | 0 | −16.6624 | − | 61.7929i | 100.822i | 0 | − | 277.765i | −473.491 | − | 194.808i | 0 | 640.287 | + | 490.503i | ||||||||||||||||||||||||||||||||||||||||||||||
19.10 | 4.86506 | + | 6.35069i | 0 | −16.6624 | + | 61.7929i | − | 100.822i | 0 | 277.765i | −473.491 | + | 194.808i | 0 | 640.287 | − | 490.503i | ||||||||||||||||||||||||||||||||||||||||||||||
19.11 | 7.49039 | − | 2.80965i | 0 | 48.2118 | − | 42.0907i | 128.353i | 0 | 534.624i | 242.865 | − | 450.734i | 0 | 360.627 | + | 961.414i | |||||||||||||||||||||||||||||||||||||||||||||||
19.12 | 7.49039 | + | 2.80965i | 0 | 48.2118 | + | 42.0907i | − | 128.353i | 0 | − | 534.624i | 242.865 | + | 450.734i | 0 | 360.627 | − | 961.414i | |||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.7.b.c | 12 | |
3.b | odd | 2 | 1 | 24.7.b.a | ✓ | 12 | |
4.b | odd | 2 | 1 | 288.7.b.d | 12 | ||
8.b | even | 2 | 1 | 288.7.b.d | 12 | ||
8.d | odd | 2 | 1 | inner | 72.7.b.c | 12 | |
12.b | even | 2 | 1 | 96.7.b.a | 12 | ||
24.f | even | 2 | 1 | 24.7.b.a | ✓ | 12 | |
24.h | odd | 2 | 1 | 96.7.b.a | 12 | ||
48.i | odd | 4 | 2 | 768.7.g.l | 24 | ||
48.k | even | 4 | 2 | 768.7.g.l | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
24.7.b.a | ✓ | 12 | 3.b | odd | 2 | 1 | |
24.7.b.a | ✓ | 12 | 24.f | even | 2 | 1 | |
72.7.b.c | 12 | 1.a | even | 1 | 1 | trivial | |
72.7.b.c | 12 | 8.d | odd | 2 | 1 | inner | |
96.7.b.a | 12 | 12.b | even | 2 | 1 | ||
96.7.b.a | 12 | 24.h | odd | 2 | 1 | ||
288.7.b.d | 12 | 4.b | odd | 2 | 1 | ||
288.7.b.d | 12 | 8.b | even | 2 | 1 | ||
768.7.g.l | 24 | 48.i | odd | 4 | 2 | ||
768.7.g.l | 24 | 48.k | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{12} + 107352 T_{5}^{10} + 3991016688 T_{5}^{8} + 71113492512000 T_{5}^{6} + \cdots + 57\!\cdots\!00 \)
acting on \(S_{7}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 10 T^{11} + \cdots + 68719476736 \)
$3$
\( T^{12} \)
$5$
\( T^{12} + 107352 T^{10} + \cdots + 57\!\cdots\!00 \)
$7$
\( T^{12} + 858216 T^{10} + \cdots + 91\!\cdots\!36 \)
$11$
\( (T^{6} + 1360 T^{5} + \cdots + 23\!\cdots\!12)^{2} \)
$13$
\( T^{12} + 26982528 T^{10} + \cdots + 36\!\cdots\!84 \)
$17$
\( (T^{6} - 2444 T^{5} + \cdots - 15\!\cdots\!24)^{2} \)
$19$
\( (T^{6} - 1968 T^{5} + \cdots + 24\!\cdots\!16)^{2} \)
$23$
\( T^{12} + 879376800 T^{10} + \cdots + 12\!\cdots\!56 \)
$29$
\( T^{12} + 4040599128 T^{10} + \cdots + 28\!\cdots\!04 \)
$31$
\( T^{12} + 7044987816 T^{10} + \cdots + 12\!\cdots\!84 \)
$37$
\( T^{12} + 20697207840 T^{10} + \cdots + 84\!\cdots\!96 \)
$41$
\( (T^{6} - 27140 T^{5} + \cdots - 11\!\cdots\!36)^{2} \)
$43$
\( (T^{6} + 24912 T^{5} + \cdots - 19\!\cdots\!32)^{2} \)
$47$
\( T^{12} + 86670856608 T^{10} + \cdots + 41\!\cdots\!84 \)
$53$
\( T^{12} + 172945812888 T^{10} + \cdots + 33\!\cdots\!64 \)
$59$
\( (T^{6} - 443072 T^{5} + \cdots + 12\!\cdots\!28)^{2} \)
$61$
\( T^{12} + 348717987744 T^{10} + \cdots + 34\!\cdots\!36 \)
$67$
\( (T^{6} - 782976 T^{5} + \cdots - 54\!\cdots\!96)^{2} \)
$71$
\( T^{12} + 671412159648 T^{10} + \cdots + 49\!\cdots\!36 \)
$73$
\( (T^{6} - 277740 T^{5} + \cdots + 11\!\cdots\!24)^{2} \)
$79$
\( T^{12} + 1736387849448 T^{10} + \cdots + 65\!\cdots\!24 \)
$83$
\( (T^{6} + 1248880 T^{5} + \cdots + 53\!\cdots\!04)^{2} \)
$89$
\( (T^{6} + 183700 T^{5} + \cdots + 62\!\cdots\!04)^{2} \)
$97$
\( (T^{6} + 582828 T^{5} + \cdots - 50\!\cdots\!12)^{2} \)
show more
show less