Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(16.5638940206\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.0.3803625.2 |
Defining polynomial: |
\( x^{4} - x^{3} + 6x^{2} - 16x + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{6} \) |
Twist minimal: | no (minimal twist has level 8) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} + 6x^{2} - 16x + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( 4\nu - 1 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{3} + \nu^{2} - 6\nu + 16 ) / 8 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} + 31\nu^{2} + 6\nu + 80 ) / 8 \)
|
\(\nu\) | \(=\) |
\( ( \beta _1 + 1 ) / 4 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{3} + \beta_{2} - 12 ) / 4 \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{3} - 31\beta_{2} - 6\beta _1 + 46 ) / 4 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−5.62348 | − | 5.69004i | 0 | −0.753049 | + | 63.9956i | 59.7107i | 0 | − | 483.584i | 368.372 | − | 355.593i | 0 | 339.756 | − | 335.782i | |||||||||||||||||||||
19.2 | −5.62348 | + | 5.69004i | 0 | −0.753049 | − | 63.9956i | − | 59.7107i | 0 | 483.584i | 368.372 | + | 355.593i | 0 | 339.756 | + | 335.782i | ||||||||||||||||||||||
19.3 | 4.62348 | − | 6.52867i | 0 | −21.2470 | − | 60.3702i | − | 199.084i | 0 | − | 19.6656i | −492.372 | − | 140.406i | 0 | −1299.76 | − | 920.462i | |||||||||||||||||||||
19.4 | 4.62348 | + | 6.52867i | 0 | −21.2470 | + | 60.3702i | 199.084i | 0 | 19.6656i | −492.372 | + | 140.406i | 0 | −1299.76 | + | 920.462i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.7.b.b | 4 | |
3.b | odd | 2 | 1 | 8.7.d.b | ✓ | 4 | |
4.b | odd | 2 | 1 | 288.7.b.b | 4 | ||
8.b | even | 2 | 1 | 288.7.b.b | 4 | ||
8.d | odd | 2 | 1 | inner | 72.7.b.b | 4 | |
12.b | even | 2 | 1 | 32.7.d.b | 4 | ||
24.f | even | 2 | 1 | 8.7.d.b | ✓ | 4 | |
24.h | odd | 2 | 1 | 32.7.d.b | 4 | ||
48.i | odd | 4 | 2 | 256.7.c.l | 8 | ||
48.k | even | 4 | 2 | 256.7.c.l | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
8.7.d.b | ✓ | 4 | 3.b | odd | 2 | 1 | |
8.7.d.b | ✓ | 4 | 24.f | even | 2 | 1 | |
32.7.d.b | 4 | 12.b | even | 2 | 1 | ||
32.7.d.b | 4 | 24.h | odd | 2 | 1 | ||
72.7.b.b | 4 | 1.a | even | 1 | 1 | trivial | |
72.7.b.b | 4 | 8.d | odd | 2 | 1 | inner | |
256.7.c.l | 8 | 48.i | odd | 4 | 2 | ||
256.7.c.l | 8 | 48.k | even | 4 | 2 | ||
288.7.b.b | 4 | 4.b | odd | 2 | 1 | ||
288.7.b.b | 4 | 8.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 43200T_{5}^{2} + 141312000 \)
acting on \(S_{7}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 2 T^{3} + 24 T^{2} + \cdots + 4096 \)
$3$
\( T^{4} \)
$5$
\( T^{4} + 43200 T^{2} + \cdots + 141312000 \)
$7$
\( T^{4} + 234240 T^{2} + \cdots + 90439680 \)
$11$
\( (T^{2} + 488 T - 1305044)^{2} \)
$13$
\( T^{4} + 14312640 T^{2} + \cdots + 28641121812480 \)
$17$
\( (T^{2} + 2084 T - 15714236)^{2} \)
$19$
\( (T^{2} + 728 T - 1642004)^{2} \)
$23$
\( T^{4} + 380025600 T^{2} + \cdots + 40\!\cdots\!00 \)
$29$
\( T^{4} + 969574080 T^{2} + \cdots + 19\!\cdots\!80 \)
$31$
\( T^{4} + 791654400 T^{2} + \cdots + 41\!\cdots\!00 \)
$37$
\( T^{4} + 2141703360 T^{2} + \cdots + 10\!\cdots\!80 \)
$41$
\( (T^{2} - 58972 T + 357521476)^{2} \)
$43$
\( (T^{2} - 98728 T + 547375276)^{2} \)
$47$
\( T^{4} + 29538094080 T^{2} + \cdots + 10\!\cdots\!80 \)
$53$
\( T^{4} + 46462898880 T^{2} + \cdots + 29\!\cdots\!80 \)
$59$
\( (T^{2} + 271016 T + 18317507884)^{2} \)
$61$
\( T^{4} + 45212594880 T^{2} + \cdots + 33\!\cdots\!80 \)
$67$
\( (T^{2} + 395096 T + 24071074924)^{2} \)
$71$
\( T^{4} + 348036514560 T^{2} + \cdots + 11\!\cdots\!80 \)
$73$
\( (T^{2} - 221956 T - 18286467836)^{2} \)
$79$
\( T^{4} + 144092482560 T^{2} + \cdots + 31\!\cdots\!80 \)
$83$
\( (T^{2} - 1732504 T + 746384920684)^{2} \)
$89$
\( (T^{2} + 380612 T - 23540043644)^{2} \)
$97$
\( (T^{2} + 463388 T - 711956225084)^{2} \)
show more
show less