Properties

Label 72.7
Level 72
Weight 7
Dimension 375
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 2016
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(2016\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(72))\).

Total New Old
Modular forms 912 393 519
Cusp forms 816 375 441
Eisenstein series 96 18 78

Trace form

\( 375 q - 8 q^{2} + 6 q^{3} + 18 q^{4} + 124 q^{6} - 314 q^{7} - 806 q^{8} + 66 q^{9} + 2248 q^{10} - 10 q^{11} - 3854 q^{12} - 1968 q^{13} - 4398 q^{14} + 9366 q^{15} + 4230 q^{16} + 2438 q^{17} + 16656 q^{18}+ \cdots + 3433962 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(72))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
72.7.b \(\chi_{72}(19, \cdot)\) 72.7.b.a 1 1
72.7.b.b 4
72.7.b.c 12
72.7.b.d 12
72.7.e \(\chi_{72}(17, \cdot)\) 72.7.e.a 2 1
72.7.e.b 4
72.7.g \(\chi_{72}(55, \cdot)\) None 0 1
72.7.h \(\chi_{72}(53, \cdot)\) 72.7.h.a 24 1
72.7.j \(\chi_{72}(5, \cdot)\) 72.7.j.a 140 2
72.7.k \(\chi_{72}(7, \cdot)\) None 0 2
72.7.m \(\chi_{72}(41, \cdot)\) 72.7.m.a 36 2
72.7.p \(\chi_{72}(43, \cdot)\) 72.7.p.a 4 2
72.7.p.b 136

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(72))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(72)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)