Properties

Label 72.4.l.a.59.1
Level $72$
Weight $4$
Character 72.59
Analytic conductor $4.248$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Error: no document with id 224675210 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,4,Mod(11,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.11"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24813752041\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 59.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 72.59
Dual form 72.4.l.a.11.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44949 + 1.41421i) q^{2} +(-3.72474 - 3.62302i) q^{3} +(4.00000 - 6.92820i) q^{4} +(14.2474 + 3.60697i) q^{6} +22.6274i q^{8} +(0.747449 + 26.9897i) q^{9} +(-44.1186 + 25.4719i) q^{11} +(-40.0000 + 11.3137i) q^{12} +(-32.0000 - 55.4256i) q^{16} +131.682i q^{17} +(-40.0000 - 65.0538i) q^{18} -57.2270 q^{19} +(72.0454 - 124.786i) q^{22} +(81.9796 - 84.2814i) q^{24} +(62.5000 + 108.253i) q^{25} +(95.0000 - 103.238i) q^{27} +(156.767 + 90.5097i) q^{32} +(256.616 + 64.9663i) q^{33} +(-186.227 - 322.555i) q^{34} +(189.980 + 102.780i) q^{36} +(140.177 - 80.9313i) q^{38} +(-415.995 - 240.175i) q^{41} +(-136.931 - 237.172i) q^{43} +407.550i q^{44} +(-81.6163 + 322.383i) q^{48} +(-171.500 + 297.047i) q^{49} +(-306.186 - 176.777i) q^{50} +(477.088 - 490.483i) q^{51} +(-86.7015 + 387.230i) q^{54} +(213.156 + 207.335i) q^{57} +(-493.654 - 285.011i) q^{59} -512.000 q^{64} +(-720.454 + 203.775i) q^{66} +(-491.476 + 851.262i) q^{67} +(912.322 + 526.730i) q^{68} +(-610.706 + 16.9128i) q^{72} +1229.09 q^{73} +(159.407 - 629.654i) q^{75} +(-228.908 + 396.481i) q^{76} +(-727.883 + 40.3468i) q^{81} +1358.63 q^{82} +(590.327 - 340.825i) q^{83} +(670.824 + 387.300i) q^{86} +(-576.363 - 998.290i) q^{88} -1329.36i q^{89} +(-256.000 - 905.097i) q^{96} +(499.545 + 865.238i) q^{97} -970.151i q^{98} +(-720.454 - 1171.71i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{3} + 16 q^{4} + 8 q^{6} - 46 q^{9} - 54 q^{11} - 160 q^{12} - 128 q^{16} - 160 q^{18} + 212 q^{19} + 200 q^{22} - 64 q^{24} + 250 q^{25} + 380 q^{27} + 370 q^{33} - 304 q^{34} + 368 q^{36} + 1080 q^{38}+ \cdots - 2000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.44949 + 1.41421i −0.866025 + 0.500000i
\(3\) −3.72474 3.62302i −0.716827 0.697251i
\(4\) 4.00000 6.92820i 0.500000 0.866025i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 14.2474 + 3.60697i 0.969416 + 0.245423i
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) 22.6274i 1.00000i
\(9\) 0.747449 + 26.9897i 0.0276833 + 0.999617i
\(10\) 0 0
\(11\) −44.1186 + 25.4719i −1.20930 + 0.698188i −0.962606 0.270906i \(-0.912677\pi\)
−0.246691 + 0.969094i \(0.579343\pi\)
\(12\) −40.0000 + 11.3137i −0.962250 + 0.272166i
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −32.0000 55.4256i −0.500000 0.866025i
\(17\) 131.682i 1.87869i 0.342978 + 0.939343i \(0.388564\pi\)
−0.342978 + 0.939343i \(0.611436\pi\)
\(18\) −40.0000 65.0538i −0.523783 0.851852i
\(19\) −57.2270 −0.690989 −0.345494 0.938421i \(-0.612289\pi\)
−0.345494 + 0.938421i \(0.612289\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 72.0454 124.786i 0.698188 1.20930i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 81.9796 84.2814i 0.697251 0.716827i
\(25\) 62.5000 + 108.253i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) 95.0000 103.238i 0.677139 0.735855i
\(28\) 0 0
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 156.767 + 90.5097i 0.866025 + 0.500000i
\(33\) 256.616 + 64.9663i 1.35367 + 0.342703i
\(34\) −186.227 322.555i −0.939343 1.62699i
\(35\) 0 0
\(36\) 189.980 + 102.780i 0.879535 + 0.475834i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 140.177 80.9313i 0.598414 0.345494i
\(39\) 0 0
\(40\) 0 0
\(41\) −415.995 240.175i −1.58457 0.914854i −0.994179 0.107738i \(-0.965639\pi\)
−0.590394 0.807116i \(-0.701027\pi\)
\(42\) 0 0
\(43\) −136.931 237.172i −0.485624 0.841126i 0.514239 0.857647i \(-0.328074\pi\)
−0.999864 + 0.0165210i \(0.994741\pi\)
\(44\) 407.550i 1.39638i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −81.6163 + 322.383i −0.245423 + 0.969416i
\(49\) −171.500 + 297.047i −0.500000 + 0.866025i
\(50\) −306.186 176.777i −0.866025 0.500000i
\(51\) 477.088 490.483i 1.30992 1.34669i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −86.7015 + 387.230i −0.218492 + 0.975839i
\(55\) 0 0
\(56\) 0 0
\(57\) 213.156 + 207.335i 0.495320 + 0.481792i
\(58\) 0 0
\(59\) −493.654 285.011i −1.08929 0.628904i −0.155905 0.987772i \(-0.549829\pi\)
−0.933388 + 0.358868i \(0.883163\pi\)
\(60\) 0 0
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −512.000 −1.00000
\(65\) 0 0
\(66\) −720.454 + 203.775i −1.34366 + 0.380045i
\(67\) −491.476 + 851.262i −0.896170 + 1.55221i −0.0638199 + 0.997961i \(0.520328\pi\)
−0.832350 + 0.554250i \(0.813005\pi\)
\(68\) 912.322 + 526.730i 1.62699 + 0.939343i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −610.706 + 16.9128i −0.999617 + 0.0276833i
\(73\) 1229.09 1.97060 0.985301 0.170827i \(-0.0546438\pi\)
0.985301 + 0.170827i \(0.0546438\pi\)
\(74\) 0 0
\(75\) 159.407 629.654i 0.245423 0.969416i
\(76\) −228.908 + 396.481i −0.345494 + 0.598414i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0 0
\(81\) −727.883 + 40.3468i −0.998467 + 0.0553454i
\(82\) 1358.63 1.82971
\(83\) 590.327 340.825i 0.780684 0.450728i −0.0559884 0.998431i \(-0.517831\pi\)
0.836673 + 0.547703i \(0.184498\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 670.824 + 387.300i 0.841126 + 0.485624i
\(87\) 0 0
\(88\) −576.363 998.290i −0.698188 1.20930i
\(89\) 1329.36i 1.58328i −0.610988 0.791640i \(-0.709227\pi\)
0.610988 0.791640i \(-0.290773\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −256.000 905.097i −0.272166 0.962250i
\(97\) 499.545 + 865.238i 0.522898 + 0.905687i 0.999645 + 0.0266459i \(0.00848265\pi\)
−0.476746 + 0.879041i \(0.658184\pi\)
\(98\) 970.151i 1.00000i
\(99\) −720.454 1171.71i −0.731398 1.18951i
\(100\) 1000.00 1.00000
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) −474.974 + 1876.14i −0.461073 + 1.82123i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2183.77i 1.97302i 0.163711 + 0.986508i \(0.447654\pi\)
−0.163711 + 0.986508i \(0.552346\pi\)
\(108\) −335.251 1071.13i −0.298699 0.954347i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2067.37 1193.60i −1.72108 0.993665i −0.916732 0.399502i \(-0.869183\pi\)
−0.804345 0.594162i \(-0.797484\pi\)
\(114\) −815.339 206.416i −0.669855 0.169584i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 1612.27 1.25781
\(119\) 0 0
\(120\) 0 0
\(121\) 632.135 1094.89i 0.474933 0.822607i
\(122\) 0 0
\(123\) 679.317 + 2401.75i 0.497983 + 1.76064i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1254.14 724.077i 0.866025 0.500000i
\(129\) −349.245 + 1379.51i −0.238367 + 0.941544i
\(130\) 0 0
\(131\) 2363.76 + 1364.72i 1.57651 + 0.910197i 0.995342 + 0.0964118i \(0.0307366\pi\)
0.581166 + 0.813785i \(0.302597\pi\)
\(132\) 1476.56 1518.02i 0.973624 1.00096i
\(133\) 0 0
\(134\) 2780.21i 1.79234i
\(135\) 0 0
\(136\) −2979.63 −1.87869
\(137\) 697.906 402.936i 0.435227 0.251279i −0.266344 0.963878i \(-0.585816\pi\)
0.701571 + 0.712599i \(0.252482\pi\)
\(138\) 0 0
\(139\) −1636.11 + 2833.83i −0.998368 + 1.72922i −0.449723 + 0.893168i \(0.648477\pi\)
−0.548645 + 0.836056i \(0.684856\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1472.00 905.097i 0.851852 0.523783i
\(145\) 0 0
\(146\) −3010.64 + 1738.19i −1.70659 + 0.985301i
\(147\) 1715.00 485.075i 0.962250 0.272166i
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 500.000 + 1767.77i 0.272166 + 0.962250i
\(151\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 1294.90i 0.690989i
\(153\) −3554.06 + 98.4258i −1.87797 + 0.0520082i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 1725.88 1128.21i 0.837025 0.547164i
\(163\) −970.000 −0.466112 −0.233056 0.972463i \(-0.574873\pi\)
−0.233056 + 0.972463i \(0.574873\pi\)
\(164\) −3327.96 + 1921.40i −1.58457 + 0.914854i
\(165\) 0 0
\(166\) −964.000 + 1669.70i −0.450728 + 0.780684i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) −1098.50 1902.66i −0.500000 0.866025i
\(170\) 0 0
\(171\) −42.7743 1544.54i −0.0191288 0.690724i
\(172\) −2190.90 −0.971248
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2823.59 + 1630.20i 1.20930 + 0.698188i
\(177\) 806.134 + 2850.11i 0.342332 + 1.21033i
\(178\) 1880.00 + 3256.26i 0.791640 + 1.37116i
\(179\) 2870.85i 1.19876i 0.800465 + 0.599379i \(0.204586\pi\)
−0.800465 + 0.599379i \(0.795414\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3354.20 5809.65i −1.31168 2.27189i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 1907.07 + 1854.99i 0.716827 + 0.697251i
\(193\) 2660.90 4608.82i 0.992415 1.71891i 0.389745 0.920923i \(-0.372563\pi\)
0.602670 0.797990i \(-0.294103\pi\)
\(194\) −2447.26 1412.93i −0.905687 0.522898i
\(195\) 0 0
\(196\) 1372.00 + 2376.37i 0.500000 + 0.866025i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 3421.79 + 1851.21i 1.22816 + 0.664443i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −2449.49 + 1414.21i −0.866025 + 0.500000i
\(201\) 4914.76 1390.10i 1.72468 0.487813i
\(202\) 0 0
\(203\) 0 0
\(204\) −1489.82 5267.30i −0.511314 1.80777i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2524.78 1457.68i 0.835610 0.482440i
\(210\) 0 0
\(211\) 3059.00 5298.34i 0.998058 1.72869i 0.445083 0.895489i \(-0.353174\pi\)
0.552975 0.833198i \(-0.313493\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −3088.31 5349.12i −0.986508 1.70868i
\(215\) 0 0
\(216\) 2336.00 + 2149.60i 0.735855 + 0.677139i
\(217\) 0 0
\(218\) 0 0
\(219\) −4578.04 4453.01i −1.41258 1.37400i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 0 0
\(225\) −2875.00 + 1767.77i −0.851852 + 0.523783i
\(226\) 6752.00 1.98733
\(227\) 4103.25 2369.01i 1.19974 0.692673i 0.239246 0.970959i \(-0.423100\pi\)
0.960498 + 0.278286i \(0.0897663\pi\)
\(228\) 2289.08 647.450i 0.664904 0.188063i
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7108.69i 1.99874i 0.0355143 + 0.999369i \(0.488693\pi\)
−0.0355143 + 0.999369i \(0.511307\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3949.23 + 2280.09i −1.08929 + 0.628904i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) 2891.08 + 5007.50i 0.772743 + 1.33843i 0.936054 + 0.351856i \(0.114449\pi\)
−0.163311 + 0.986575i \(0.552217\pi\)
\(242\) 3575.90i 0.949865i
\(243\) 2857.35 + 2486.85i 0.754318 + 0.656509i
\(244\) 0 0
\(245\) 0 0
\(246\) −5060.56 4922.36i −1.31158 1.27576i
\(247\) 0 0
\(248\) 0 0
\(249\) −3433.64 869.279i −0.873887 0.221238i
\(250\) 0 0
\(251\) 381.026i 0.0958174i 0.998852 + 0.0479087i \(0.0152556\pi\)
−0.998852 + 0.0479087i \(0.984744\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −2048.00 + 3547.24i −0.500000 + 0.866025i
\(257\) 247.544 + 142.919i 0.0600831 + 0.0346890i 0.529741 0.848160i \(-0.322289\pi\)
−0.469658 + 0.882849i \(0.655623\pi\)
\(258\) −1095.45 3873.00i −0.264340 0.934584i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −7720.00 −1.82039
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) −1470.02 + 5806.55i −0.342703 + 1.35367i
\(265\) 0 0
\(266\) 0 0
\(267\) −4816.30 + 4951.53i −1.10394 + 1.13494i
\(268\) 3931.81 + 6810.09i 0.896170 + 1.55221i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 7298.58 4213.84i 1.62699 0.939343i
\(273\) 0 0
\(274\) −1139.68 + 1973.98i −0.251279 + 0.435227i
\(275\) −5514.83 3183.99i −1.20930 0.698188i
\(276\) 0 0
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 9255.24i 1.99674i
\(279\) 0 0
\(280\) 0 0
\(281\) 1053.28 608.112i 0.223607 0.129099i −0.384013 0.923328i \(-0.625458\pi\)
0.607619 + 0.794229i \(0.292125\pi\)
\(282\) 0 0
\(283\) −4015.00 + 6954.18i −0.843346 + 1.46072i 0.0437035 + 0.999045i \(0.486084\pi\)
−0.887050 + 0.461674i \(0.847249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2325.65 + 4298.75i −0.475834 + 0.879535i
\(289\) −12427.3 −2.52946
\(290\) 0 0
\(291\) 1274.10 5032.65i 0.256663 1.01381i
\(292\) 4916.36 8515.38i 0.985301 1.70659i
\(293\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) −3514.87 + 3613.56i −0.697251 + 0.716827i
\(295\) 0 0
\(296\) 0 0
\(297\) −1561.61 + 6974.53i −0.305097 + 1.36264i
\(298\) 0 0
\(299\) 0 0
\(300\) −3724.74 3623.02i −0.716827 0.697251i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1831.27 + 3171.84i 0.345494 + 0.598414i
\(305\) 0 0
\(306\) 8566.44 5267.30i 1.60036 0.984024i
\(307\) 10233.9 1.90253 0.951265 0.308375i \(-0.0997851\pi\)
0.951265 + 0.308375i \(0.0997851\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 5227.95 + 9055.07i 0.944093 + 1.63522i 0.757557 + 0.652769i \(0.226393\pi\)
0.186536 + 0.982448i \(0.440274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 7911.83 8133.98i 1.37569 1.41431i
\(322\) 0 0
\(323\) 7535.79i 1.29815i
\(324\) −2632.00 + 5204.31i −0.451303 + 0.892371i
\(325\) 0 0
\(326\) 2376.01 1371.79i 0.403665 0.233056i
\(327\) 0 0
\(328\) 5434.53 9412.89i 0.914854 1.58457i
\(329\) 0 0
\(330\) 0 0
\(331\) 4121.00 + 7137.78i 0.684322 + 1.18528i 0.973649 + 0.228051i \(0.0732351\pi\)
−0.289327 + 0.957230i \(0.593432\pi\)
\(332\) 5453.21i 0.901457i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −780.232 + 1351.40i −0.126118 + 0.218444i −0.922170 0.386786i \(-0.873585\pi\)
0.796051 + 0.605229i \(0.206919\pi\)
\(338\) 5381.53 + 3107.03i 0.866025 + 0.500000i
\(339\) 3376.00 + 11936.0i 0.540882 + 1.91231i
\(340\) 0 0
\(341\) 0 0
\(342\) 2289.08 + 3722.84i 0.361928 + 0.588620i
\(343\) 0 0
\(344\) 5366.59 3098.40i 0.841126 0.485624i
\(345\) 0 0
\(346\) 0 0
\(347\) −9474.14 5469.90i −1.46570 0.846224i −0.466437 0.884554i \(-0.654463\pi\)
−0.999265 + 0.0383308i \(0.987796\pi\)
\(348\) 0 0
\(349\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9221.81 −1.39638
\(353\) 1781.98 1028.83i 0.268684 0.155125i −0.359605 0.933104i \(-0.617089\pi\)
0.628289 + 0.777980i \(0.283755\pi\)
\(354\) −6005.29 5841.28i −0.901631 0.877007i
\(355\) 0 0
\(356\) −9210.08 5317.44i −1.37116 0.791640i
\(357\) 0 0
\(358\) −4060.00 7032.13i −0.599379 1.03815i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3584.07 −0.522535
\(362\) 0 0
\(363\) −6321.35 + 1787.95i −0.914008 + 0.258521i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) 6171.30 11407.1i 0.870637 1.60929i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 16432.2 + 9487.11i 2.27189 + 1.31168i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1993.12 0.270131 0.135066 0.990837i \(-0.456875\pi\)
0.135066 + 0.990837i \(0.456875\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) −7294.69 1846.77i −0.969416 0.245423i
\(385\) 0 0
\(386\) 15052.3i 1.98483i
\(387\) 6298.84 3873.00i 0.827360 0.508723i
\(388\) 7992.73 1.04580
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −6721.40 3880.60i −0.866025 0.500000i
\(393\) −3860.00 13647.2i −0.495448 1.75167i
\(394\) 0 0
\(395\) 0 0
\(396\) −10999.6 + 304.623i −1.39584 + 0.0386563i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 4000.00 6928.20i 0.500000 0.866025i
\(401\) 1006.95 + 581.361i 0.125398 + 0.0723984i 0.561387 0.827554i \(-0.310268\pi\)
−0.435989 + 0.899952i \(0.643601\pi\)
\(402\) −10072.8 + 10355.6i −1.24971 + 1.28480i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 11098.4 + 10795.3i 1.34669 + 1.30992i
\(409\) 2984.23 5168.84i 0.360784 0.624896i −0.627306 0.778773i \(-0.715842\pi\)
0.988090 + 0.153877i \(0.0491758\pi\)
\(410\) 0 0
\(411\) −4059.37 1027.69i −0.487187 0.123339i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16361.1 4627.62i 1.92136 0.543443i
\(418\) −4122.95 + 7141.15i −0.482440 + 0.835610i
\(419\) 3025.12 + 1746.55i 0.352713 + 0.203639i 0.665880 0.746059i \(-0.268056\pi\)
−0.313166 + 0.949698i \(0.601390\pi\)
\(420\) 0 0
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) 17304.3i 1.99612i
\(423\) 0 0
\(424\) 0 0
\(425\) −14255.0 + 8230.15i −1.62699 + 0.939343i
\(426\) 0 0
\(427\) 0 0
\(428\) 15129.6 + 8735.07i 1.70868 + 0.986508i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −8762.01 1961.83i −0.975839 0.218492i
\(433\) −17613.6 −1.95486 −0.977432 0.211252i \(-0.932246\pi\)
−0.977432 + 0.211252i \(0.932246\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 17511.4 + 4433.28i 1.91033 + 0.483631i
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) −8145.37 4406.70i −0.879535 0.475834i
\(442\) 0 0
\(443\) −15320.4 + 8845.23i −1.64310 + 0.948645i −0.663378 + 0.748284i \(0.730878\pi\)
−0.979722 + 0.200361i \(0.935789\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11448.2i 1.20328i −0.798767 0.601641i \(-0.794514\pi\)
0.798767 0.601641i \(-0.205486\pi\)
\(450\) 4542.28 8395.99i 0.475834 0.879535i
\(451\) 24470.8 2.55496
\(452\) −16539.0 + 9548.77i −1.72108 + 0.993665i
\(453\) 0 0
\(454\) −6700.57 + 11605.7i −0.692673 + 1.19974i
\(455\) 0 0
\(456\) −4691.45 + 4823.17i −0.481792 + 0.495320i
\(457\) −7736.13 13399.4i −0.791862 1.37154i −0.924813 0.380422i \(-0.875779\pi\)
0.132951 0.991123i \(-0.457555\pi\)
\(458\) 0 0
\(459\) 13594.6 + 12509.8i 1.38244 + 1.27213i
\(460\) 0 0
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −10053.2 17412.7i −0.999369 1.73096i
\(467\) 6280.46i 0.622324i −0.950357 0.311162i \(-0.899282\pi\)
0.950357 0.311162i \(-0.100718\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 6449.07 11170.1i 0.628904 1.08929i
\(473\) 12082.4 + 6975.80i 1.17453 + 0.678114i
\(474\) 0 0
\(475\) −3576.69 6195.01i −0.345494 0.598414i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −14163.4 8177.22i −1.33843 0.772743i
\(483\) 0 0
\(484\) −5057.08 8759.12i −0.474933 0.822607i
\(485\) 0 0
\(486\) −10516.0 2050.61i −0.981513 0.191394i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 3613.00 + 3514.33i 0.334122 + 0.324997i
\(490\) 0 0
\(491\) 1371.00 + 791.547i 0.126013 + 0.0727536i 0.561681 0.827354i \(-0.310155\pi\)
−0.435669 + 0.900107i \(0.643488\pi\)
\(492\) 19357.1 + 4900.55i 1.77375 + 0.449052i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 9640.00 2726.60i 0.867427 0.245345i
\(499\) −10120.0 + 17528.3i −0.907880 + 1.57249i −0.0908749 + 0.995862i \(0.528966\pi\)
−0.817005 + 0.576631i \(0.804367\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −538.852 933.320i −0.0479087 0.0829803i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2801.74 + 11066.8i −0.245423 + 0.969416i
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11585.2i 1.00000i
\(513\) −5436.57 + 5907.98i −0.467895 + 0.508467i
\(514\) −808.475 −0.0693780
\(515\) 0 0
\(516\) 8160.55 + 7937.68i 0.696217 + 0.677203i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18908.8i 1.59004i 0.606584 + 0.795020i \(0.292540\pi\)
−0.606584 + 0.795020i \(0.707460\pi\)
\(522\) 0 0
\(523\) −4750.00 −0.397138 −0.198569 0.980087i \(-0.563629\pi\)
−0.198569 + 0.980087i \(0.563629\pi\)
\(524\) 18910.1 10917.7i 1.57651 0.910197i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −4610.91 16302.0i −0.380045 1.34366i
\(529\) 6083.50 + 10536.9i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 7323.38 13536.6i 0.598508 1.10629i
\(532\) 0 0
\(533\) 0 0
\(534\) 4794.96 18940.0i 0.388573 1.53486i
\(535\) 0 0
\(536\) −19261.9 11120.8i −1.55221 0.896170i
\(537\) 10401.2 10693.2i 0.835835 0.859303i
\(538\) 0 0
\(539\) 17473.7i 1.39638i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −11918.5 + 20643.5i −0.939343 + 1.62699i
\(545\) 0 0
\(546\) 0 0
\(547\) −11227.4 19446.4i −0.877601 1.52005i −0.853966 0.520329i \(-0.825809\pi\)
−0.0236354 0.999721i \(-0.507524\pi\)
\(548\) 6446.98i 0.502557i
\(549\) 0 0
\(550\) 18011.4 1.39638
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 13088.9 + 22670.6i 0.998368 + 1.72922i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −8554.92 + 33791.8i −0.643831 + 2.54312i
\(562\) −1720.00 + 2979.13i −0.129099 + 0.223607i
\(563\) 23118.1 + 13347.2i 1.73057 + 0.999146i 0.885943 + 0.463795i \(0.153512\pi\)
0.844629 + 0.535352i \(0.179821\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22712.3i 1.68669i
\(567\) 0 0
\(568\) 0 0
\(569\) 9913.06 5723.31i 0.730364 0.421676i −0.0881913 0.996104i \(-0.528109\pi\)
0.818555 + 0.574428i \(0.194775\pi\)
\(570\) 0 0
\(571\) 5161.21 8939.47i 0.378266 0.655176i −0.612544 0.790436i \(-0.709854\pi\)
0.990810 + 0.135261i \(0.0431872\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −382.694 13818.7i −0.0276833 0.999617i
\(577\) 7244.05 0.522658 0.261329 0.965250i \(-0.415839\pi\)
0.261329 + 0.965250i \(0.415839\pi\)
\(578\) 30440.4 17574.8i 2.19058 1.26473i
\(579\) −26609.0 + 7526.17i −1.90990 + 0.540202i
\(580\) 0 0
\(581\) 0 0
\(582\) 3996.36 + 14129.3i 0.284630 + 1.00632i
\(583\) 0 0
\(584\) 27811.1i 1.97060i
\(585\) 0 0
\(586\) 0 0
\(587\) −3709.69 + 2141.79i −0.260843 + 0.150598i −0.624719 0.780849i \(-0.714787\pi\)
0.363876 + 0.931447i \(0.381453\pi\)
\(588\) 3499.30 13822.2i 0.245423 0.969416i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12173.6i 0.843015i −0.906825 0.421507i \(-0.861501\pi\)
0.906825 0.421507i \(-0.138499\pi\)
\(594\) −6038.32 19292.5i −0.417097 1.33263i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 14247.4 + 3606.97i 0.969416 + 0.245423i
\(601\) 7533.43 + 13048.3i 0.511306 + 0.885608i 0.999914 + 0.0131049i \(0.00417154\pi\)
−0.488608 + 0.872503i \(0.662495\pi\)
\(602\) 0 0
\(603\) −23342.6 12628.5i −1.57643 0.852856i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) −8971.33 5179.60i −0.598414 0.345494i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −13534.3 + 25017.0i −0.893943 + 1.65237i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −25067.7 + 14472.8i −1.64764 + 0.951265i
\(615\) 0 0
\(616\) 0 0
\(617\) 16545.1 + 9552.30i 1.07954 + 0.623275i 0.930774 0.365596i \(-0.119135\pi\)
0.148771 + 0.988872i \(0.452468\pi\)
\(618\) 0 0
\(619\) −6629.34 11482.4i −0.430462 0.745582i 0.566451 0.824095i \(-0.308316\pi\)
−0.996913 + 0.0785136i \(0.974983\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7812.50 + 13531.6i −0.500000 + 0.866025i
\(626\) −25611.6 14786.9i −1.63522 0.944093i
\(627\) −14685.4 3717.83i −0.935370 0.236804i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −30590.0 + 8652.16i −1.92076 + 0.543274i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8745.38 + 5049.15i −0.538880 + 0.311122i −0.744625 0.667483i \(-0.767372\pi\)
0.205745 + 0.978606i \(0.434038\pi\)
\(642\) −7876.78 + 31113.1i −0.484224 + 1.91267i
\(643\) 314.446 544.637i 0.0192855 0.0334034i −0.856222 0.516609i \(-0.827194\pi\)
0.875507 + 0.483205i \(0.160528\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 10657.2 + 18458.8i 0.649076 + 1.12423i
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −912.943 16470.1i −0.0553454 0.998467i
\(649\) 29039.1 1.75637
\(650\) 0 0
\(651\) 0 0
\(652\) −3880.00 + 6720.36i −0.233056 + 0.403665i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 30742.4i 1.82971i
\(657\) 918.681 + 33172.7i 0.0545527 + 1.96985i
\(658\) 0 0
\(659\) 13949.8 8053.95i 0.824596 0.476081i −0.0274028 0.999624i \(-0.508724\pi\)
0.851999 + 0.523544i \(0.175390\pi\)
\(660\) 0 0
\(661\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) −20188.7 11655.9i −1.18528 0.684322i
\(663\) 0 0
\(664\) 7712.00 + 13357.6i 0.450728 + 0.780684i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −9595.00 16619.0i −0.549569 0.951882i −0.998304 0.0582168i \(-0.981459\pi\)
0.448735 0.893665i \(-0.351875\pi\)
\(674\) 4413.66i 0.252237i
\(675\) 17113.3 + 3831.70i 0.975839 + 0.218492i
\(676\) −17576.0 −1.00000
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) −25149.5 24462.6i −1.42457 1.38567i
\(679\) 0 0
\(680\) 0 0
\(681\) −23866.5 6042.19i −1.34298 0.339996i
\(682\) 0 0
\(683\) 27182.7i 1.52287i 0.648243 + 0.761434i \(0.275504\pi\)
−0.648243 + 0.761434i \(0.724496\pi\)
\(684\) −10872.0 5881.80i −0.607749 0.328796i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −8763.61 + 15179.0i −0.485624 + 0.841126i
\(689\) 0 0
\(690\) 0 0
\(691\) 989.000 + 1713.00i 0.0544477 + 0.0943061i 0.891965 0.452105i \(-0.149327\pi\)
−0.837517 + 0.546411i \(0.815994\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 30942.4 1.69245
\(695\) 0 0
\(696\) 0 0
\(697\) 31626.8 54779.2i 1.71872 2.97692i
\(698\) 0 0
\(699\) 25754.9 26478.1i 1.39362 1.43275i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 22588.7 13041.6i 1.20930 0.698188i
\(705\) 0 0
\(706\) −2909.97 + 5040.21i −0.155125 + 0.268684i
\(707\) 0 0
\(708\) 22970.7 + 5815.40i 1.21934 + 0.308695i
\(709\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 30080.0 1.58328
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 19889.9 + 11483.4i 1.03815 + 0.599379i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 8779.13 5068.63i 0.452528 0.261267i
\(723\) 7373.74 29126.1i 0.379298 1.49822i
\(724\) 0 0
\(725\) 0 0
\(726\) 12955.5 13319.3i 0.662294 0.680889i
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) −1633.00 19615.1i −0.0829650 0.996552i
\(730\) 0 0
\(731\) 31231.4 18031.5i 1.58021 0.912336i
\(732\) 0 0
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50075.3i 2.50278i
\(738\) 1015.51 + 36669.0i 0.0506523 + 1.82901i
\(739\) −33358.6 −1.66051 −0.830253 0.557386i \(-0.811804\pi\)
−0.830253 + 0.557386i \(0.811804\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 9640.00 + 15678.0i 0.472168 + 0.767908i
\(748\) −53667.2 −2.62335
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 1380.47 1419.23i 0.0668087 0.0686845i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −4882.13 + 2818.70i −0.233940 + 0.135066i
\(759\) 0 0
\(760\) 0 0
\(761\) −21114.6 12190.5i −1.00579 0.580691i −0.0958314 0.995398i \(-0.530551\pi\)
−0.909955 + 0.414706i \(0.863884\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 20480.0 5792.62i 0.962250 0.272166i
\(769\) −20053.0 + 34732.8i −0.940351 + 1.62874i −0.175548 + 0.984471i \(0.556170\pi\)
−0.764803 + 0.644264i \(0.777164\pi\)
\(770\) 0 0
\(771\) −404.237 1429.19i −0.0188823 0.0667590i
\(772\) −21287.2 36870.6i −0.992415 1.71891i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −9951.70 + 18394.8i −0.462153 + 0.854247i
\(775\) 0 0
\(776\) −19578.1 + 11303.4i −0.905687 + 0.522898i
\(777\) 0 0
\(778\) 0 0
\(779\) 23806.2 + 13744.5i 1.09492 + 0.632153i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 21952.0 1.00000
\(785\) 0 0
\(786\) 28755.0 + 27969.7i 1.30491 + 1.26927i
\(787\) −3475.00 + 6018.88i −0.157396 + 0.272617i −0.933929 0.357459i \(-0.883643\pi\)
0.776533 + 0.630076i \(0.216976\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 26512.7 16302.0i 1.18951 0.731398i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 22627.4i 1.00000i
\(801\) 35879.0 993.629i 1.58267 0.0438304i
\(802\) −3288.67 −0.144797
\(803\) −54225.7 + 31307.2i −2.38304 + 1.37585i
\(804\) 10028.1 39610.9i 0.439881 1.73752i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9439.74i 0.410239i −0.978737 0.205120i \(-0.934242\pi\)
0.978737 0.205120i \(-0.0657584\pi\)
\(810\) 0 0
\(811\) −4466.91 −0.193408 −0.0967042 0.995313i \(-0.530830\pi\)
−0.0967042 + 0.995313i \(0.530830\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −42452.2 10747.4i −1.82123 0.461073i
\(817\) 7836.18 + 13572.7i 0.335561 + 0.581208i
\(818\) 16881.4i 0.721568i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(822\) 11396.8 3223.49i 0.483586 0.136779i
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 9005.68 + 31839.9i 0.380045 + 1.34366i
\(826\) 0 0
\(827\) 41360.1i 1.73909i 0.493850 + 0.869547i \(0.335589\pi\)
−0.493850 + 0.869547i \(0.664411\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −39115.8 22583.5i −1.62699 0.939343i
\(834\) −33531.9 + 34473.4i −1.39222 + 1.43131i
\(835\) 0 0
\(836\) 23322.9i 0.964880i
\(837\) 0 0
\(838\) −9880.00 −0.407278
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 12194.5 21121.5i 0.500000 0.866025i
\(842\) 0 0
\(843\) −6126.40 1551.00i −0.250302 0.0633679i
\(844\) −24472.0 42386.7i −0.998058 1.72869i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 40150.0 11356.1i 1.62302 0.459060i
\(850\) 23278.4 40319.3i 0.939343 1.62699i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −49413.0 −1.97302
\(857\) −40348.0 + 23294.9i −1.60824 + 0.928518i −0.618475 + 0.785804i \(0.712249\pi\)
−0.989764 + 0.142713i \(0.954417\pi\)
\(858\) 0 0
\(859\) −20615.5 + 35707.0i −0.818848 + 1.41829i 0.0876838 + 0.996148i \(0.472053\pi\)
−0.906532 + 0.422138i \(0.861280\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 24236.9 7585.86i 0.954347 0.298699i
\(865\) 0 0
\(866\) 43144.3 24909.4i 1.69296 0.977432i
\(867\) 46288.4 + 45024.2i 1.81319 + 1.76367i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −22979.1 + 14129.3i −0.890864 + 0.547770i
\(874\) 0 0
\(875\) 0 0
\(876\) −49163.6 + 13905.6i −1.89621 + 0.536330i
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 31508.7i 1.20494i 0.798141 + 0.602471i \(0.205817\pi\)
−0.798141 + 0.602471i \(0.794183\pi\)
\(882\) 26184.0 725.138i 0.999617 0.0276833i
\(883\) −42570.1 −1.62242 −0.811211 0.584753i \(-0.801191\pi\)
−0.811211 + 0.584753i \(0.801191\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 25018.1 43332.6i 0.948645 1.64310i
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 31085.5 20320.6i 1.16880 0.764047i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 16190.2 + 28042.2i 0.601641 + 1.04207i
\(899\) 0 0
\(900\) 747.449 + 26989.7i 0.0276833 + 0.999617i
\(901\) 0 0
\(902\) −59941.0 + 34607.0i −2.21266 + 1.27748i
\(903\) 0 0
\(904\) 27008.0 46779.2i 0.993665 1.72108i
\(905\) 0 0
\(906\) 0 0
\(907\) 27308.3 + 47299.3i 0.999731 + 1.73158i 0.519968 + 0.854186i \(0.325944\pi\)
0.479762 + 0.877399i \(0.340723\pi\)
\(908\) 37904.2i 1.38535i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 4670.66 18449.0i 0.169584 0.669855i
\(913\) −17362.9 + 30073.5i −0.629386 + 1.09013i
\(914\) 37899.1 + 21881.1i 1.37154 + 0.791862i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −50991.3 11417.1i −1.83330 0.410479i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −38118.5 37077.4i −1.36379 1.32654i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 48671.4 28100.4i 1.71890 0.992406i 0.797945 0.602730i \(-0.205920\pi\)
0.920952 0.389676i \(-0.127413\pi\)
\(930\) 0 0
\(931\) 9814.44 16999.1i 0.345494 0.598414i
\(932\) 49250.5 + 28434.8i 1.73096 + 0.999369i
\(933\) 0 0
\(934\) 8881.92 + 15383.9i 0.311162 + 0.538948i
\(935\) 0 0
\(936\) 0 0
\(937\) 56270.0 1.96186 0.980929 0.194367i \(-0.0622652\pi\)
0.980929 + 0.194367i \(0.0622652\pi\)
\(938\) 0 0
\(939\) 13333.9 52668.8i 0.463404 1.83044i
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 36481.5i 1.25781i
\(945\) 0 0
\(946\) −39461.1 −1.35623
\(947\) −42578.8 + 24582.9i −1.46106 + 0.843544i −0.999061 0.0433353i \(-0.986202\pi\)
−0.462001 + 0.886879i \(0.652868\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 17522.1 + 10116.4i 0.598414 + 0.345494i
\(951\) 0 0
\(952\) 0 0
\(953\) 21477.7i 0.730042i 0.930999 + 0.365021i \(0.118938\pi\)
−0.930999 + 0.365021i \(0.881062\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −14895.5 25799.8i −0.500000 0.866025i
\(962\) 0 0
\(963\) −58939.1 + 1632.25i −1.97226 + 0.0546196i
\(964\) 46257.3 1.54549
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(968\) 24774.5 + 14303.6i 0.822607 + 0.474933i
\(969\) −27302.3 + 28068.9i −0.905137 + 0.930550i
\(970\) 0 0
\(971\) 60514.2i 1.99999i −0.00267705 0.999996i \(-0.500852\pi\)
0.00267705 0.999996i \(-0.499148\pi\)
\(972\) 28658.8 9848.92i 0.945712 0.325004i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38382.2 22160.0i −1.25686 0.725650i −0.284399 0.958706i \(-0.591794\pi\)
−0.972463 + 0.233056i \(0.925127\pi\)
\(978\) −13820.0 3498.76i −0.451857 0.114395i
\(979\) 33861.3 + 58649.6i 1.10543 + 1.91466i
\(980\) 0 0
\(981\) 0 0
\(982\) −4477.66 −0.145507
\(983\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) −54345.3 + 15371.2i −1.76064 + 0.497983i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 10510.7 41516.9i 0.335897 1.32679i
\(994\) 0 0
\(995\) 0 0
\(996\) −19757.1 + 20311.8i −0.628541 + 0.646189i
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 57247.2i 1.81576i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.4.l.a.59.1 yes 4
3.2 odd 2 216.4.l.a.179.2 4
4.3 odd 2 288.4.p.a.239.2 4
8.3 odd 2 CM 72.4.l.a.59.1 yes 4
8.5 even 2 288.4.p.a.239.2 4
9.2 odd 6 inner 72.4.l.a.11.1 4
9.7 even 3 216.4.l.a.35.2 4
12.11 even 2 864.4.p.a.719.1 4
24.5 odd 2 864.4.p.a.719.1 4
24.11 even 2 216.4.l.a.179.2 4
36.7 odd 6 864.4.p.a.143.1 4
36.11 even 6 288.4.p.a.47.2 4
72.11 even 6 inner 72.4.l.a.11.1 4
72.29 odd 6 288.4.p.a.47.2 4
72.43 odd 6 216.4.l.a.35.2 4
72.61 even 6 864.4.p.a.143.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.a.11.1 4 9.2 odd 6 inner
72.4.l.a.11.1 4 72.11 even 6 inner
72.4.l.a.59.1 yes 4 1.1 even 1 trivial
72.4.l.a.59.1 yes 4 8.3 odd 2 CM
216.4.l.a.35.2 4 9.7 even 3
216.4.l.a.35.2 4 72.43 odd 6
216.4.l.a.179.2 4 3.2 odd 2
216.4.l.a.179.2 4 24.11 even 2
288.4.p.a.47.2 4 36.11 even 6
288.4.p.a.47.2 4 72.29 odd 6
288.4.p.a.239.2 4 4.3 odd 2
288.4.p.a.239.2 4 8.5 even 2
864.4.p.a.143.1 4 36.7 odd 6
864.4.p.a.143.1 4 72.61 even 6
864.4.p.a.719.1 4 12.11 even 2
864.4.p.a.719.1 4 24.5 odd 2