Defining parameters
| Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 72.i (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(48\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(72, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 80 | 18 | 62 |
| Cusp forms | 64 | 18 | 46 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 72.4.i.a | $8$ | $4.248$ | 8.0.5206055409.1 | None | \(0\) | \(-3\) | \(-5\) | \(3\) | \(q-\beta _{5}q^{3}+(2\beta _{1}-\beta _{2}+\beta _{4})q^{5}+(1+\beta _{2}+\cdots)q^{7}+\cdots\) |
| 72.4.i.b | $10$ | $4.248$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(4\) | \(-5\) | \(-3\) | \(q-\beta _{4}q^{3}+(-1+\beta _{1}+\beta _{8})q^{5}+(\beta _{4}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(72, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)