Properties

Label 72.4.d
Level $72$
Weight $4$
Character orbit 72.d
Rep. character $\chi_{72}(37,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $4$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(72, [\chi])\).

Total New Old
Modular forms 40 16 24
Cusp forms 32 14 18
Eisenstein series 8 2 6

Trace form

\( 14 q - 16 q^{7} + 36 q^{8} + O(q^{10}) \) \( 14 q - 16 q^{7} + 36 q^{8} + 76 q^{10} + 84 q^{14} + 16 q^{16} - 24 q^{17} - 168 q^{20} - 132 q^{22} - 24 q^{23} - 274 q^{25} - 336 q^{26} + 408 q^{28} - 80 q^{31} + 600 q^{32} + 184 q^{34} + 972 q^{38} - 1000 q^{40} - 96 q^{41} - 1320 q^{44} - 776 q^{46} - 264 q^{47} + 750 q^{49} - 1944 q^{50} + 832 q^{52} - 48 q^{55} + 2184 q^{56} + 2124 q^{58} + 2556 q^{62} - 1488 q^{64} + 624 q^{65} - 3144 q^{68} - 2408 q^{70} + 1848 q^{71} - 156 q^{73} - 2856 q^{74} + 2168 q^{76} + 2144 q^{79} + 3456 q^{80} + 1424 q^{82} + 3084 q^{86} - 912 q^{88} - 312 q^{89} - 3552 q^{92} - 2808 q^{94} - 4320 q^{95} - 1084 q^{97} - 3912 q^{98} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.4.d.a 72.d 8.b $2$ $4.248$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-6}) \) 72.4.d.a \(0\) \(0\) \(0\) \(-68\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}-8q^{4}-7\beta q^{5}-34q^{7}-8\beta q^{8}+\cdots\)
72.4.d.b 72.d 8.b $2$ $4.248$ \(\Q(\sqrt{-7}) \) None 8.4.b.a \(2\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta )q^{2}+(-6+2\beta )q^{4}+4\beta q^{5}+\cdots\)
72.4.d.c 72.d 8.b $4$ $4.248$ \(\Q(\sqrt{-10}, \sqrt{22})\) None 72.4.d.c \(0\) \(0\) \(0\) \(40\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(3+\beta _{3})q^{4}+(\beta _{1}+\beta _{2})q^{5}+\cdots\)
72.4.d.d 72.d 8.b $6$ $4.248$ 6.0.8248384.1 None 24.4.d.a \(-2\) \(0\) \(0\) \(28\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(3+\beta _{5})q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)