Defining parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(72, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 16 | 24 |
Cusp forms | 32 | 14 | 18 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
72.4.d.a | $2$ | $4.248$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(-68\) | \(q+\beta q^{2}-8q^{4}-7\beta q^{5}-34q^{7}-8\beta q^{8}+\cdots\) |
72.4.d.b | $2$ | $4.248$ | \(\Q(\sqrt{-7}) \) | None | \(2\) | \(0\) | \(0\) | \(-16\) | \(q+(1+\beta )q^{2}+(-6+2\beta )q^{4}+4\beta q^{5}+\cdots\) |
72.4.d.c | $4$ | $4.248$ | \(\Q(\sqrt{-10}, \sqrt{22})\) | None | \(0\) | \(0\) | \(0\) | \(40\) | \(q+\beta _{1}q^{2}+(3+\beta _{3})q^{4}+(\beta _{1}+\beta _{2})q^{5}+\cdots\) |
72.4.d.d | $6$ | $4.248$ | 6.0.8248384.1 | None | \(-2\) | \(0\) | \(0\) | \(28\) | \(q+\beta _{1}q^{2}+(3+\beta _{5})q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(72, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)