Properties

Label 72.4
Level 72
Weight 4
Dimension 184
Nonzero newspaces 6
Newform subspaces 14
Sturm bound 1152
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 14 \)
Sturm bound: \(1152\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(72))\).

Total New Old
Modular forms 480 202 278
Cusp forms 384 184 200
Eisenstein series 96 18 78

Trace form

\( 184 q - 4 q^{2} - 3 q^{3} - 14 q^{4} - 22 q^{5} - 20 q^{6} - 42 q^{7} + 26 q^{8} + 21 q^{9} + 80 q^{10} + 107 q^{11} + 106 q^{12} + 64 q^{13} + 146 q^{14} + 24 q^{15} + 134 q^{16} - 142 q^{17} - 120 q^{18}+ \cdots - 7458 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
72.4.a \(\chi_{72}(1, \cdot)\) 72.4.a.a 1 1
72.4.a.b 1
72.4.a.c 1
72.4.a.d 1
72.4.c \(\chi_{72}(71, \cdot)\) None 0 1
72.4.d \(\chi_{72}(37, \cdot)\) 72.4.d.a 2 1
72.4.d.b 2
72.4.d.c 4
72.4.d.d 6
72.4.f \(\chi_{72}(35, \cdot)\) 72.4.f.a 12 1
72.4.i \(\chi_{72}(25, \cdot)\) 72.4.i.a 8 2
72.4.i.b 10
72.4.l \(\chi_{72}(11, \cdot)\) 72.4.l.a 4 2
72.4.l.b 64
72.4.n \(\chi_{72}(13, \cdot)\) 72.4.n.a 68 2
72.4.o \(\chi_{72}(23, \cdot)\) None 0 2

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(72))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(72)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)