Defining parameters
| Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 72.j (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(36\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(72, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 52 | 52 | 0 |
| Cusp forms | 44 | 44 | 0 |
| Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 72.3.j.a | $44$ | $1.962$ | None | \(-3\) | \(0\) | \(0\) | \(-2\) | ||