Properties

Label 72.3.j
Level $72$
Weight $3$
Character orbit 72.j
Rep. character $\chi_{72}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $44$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 72.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(72, [\chi])\).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

\( 44 q - 3 q^{2} - q^{4} + 5 q^{6} - 2 q^{7} - 4 q^{9} + 4 q^{10} + 14 q^{12} - 48 q^{14} + 14 q^{15} - q^{16} - 38 q^{18} - 66 q^{20} + 7 q^{22} - 6 q^{23} - 47 q^{24} - 72 q^{25} + 28 q^{28} + 16 q^{30}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.3.j.a 72.j 72.j $44$ $1.962$ None 72.3.j.a \(-3\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$