Properties

Label 72.3.b
Level $72$
Weight $3$
Character orbit 72.b
Rep. character $\chi_{72}(19,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $3$
Sturm bound $36$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 72.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(36\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(72, [\chi])\).

Total New Old
Modular forms 28 11 17
Cusp forms 20 9 11
Eisenstein series 8 2 6

Trace form

\( 9 q + 12 q^{8} - 12 q^{10} + 18 q^{11} - 36 q^{14} - 48 q^{16} + 6 q^{17} + 30 q^{19} - 72 q^{20} + 36 q^{22} - 15 q^{25} + 96 q^{26} + 72 q^{28} + 120 q^{32} - 120 q^{34} - 96 q^{35} - 108 q^{38} - 24 q^{40}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.3.b.a 72.b 8.d $1$ $1.962$ \(\Q\) \(\Q(\sqrt{-2}) \) 8.3.d.a \(2\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}+4q^{4}+8q^{8}-14q^{11}+2^{4}q^{16}+\cdots\)
72.3.b.b 72.b 8.d $4$ $1.962$ 4.0.4752.1 None 24.3.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-2+\beta _{1}-\beta _{3})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
72.3.b.c 72.b 8.d $4$ $1.962$ \(\Q(\sqrt{-6}, \sqrt{10})\) None 72.3.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+(1-\beta _{2})q^{4}+(\beta _{1}+2\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)