Properties

Label 72.22.a.b.1.1
Level $72$
Weight $22$
Character 72.1
Self dual yes
Analytic conductor $201.224$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,22,Mod(1,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(201.223687887\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{358549}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 89637 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(299.895\) of defining polynomial
Character \(\chi\) \(=\) 72.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.35342e6 q^{5} +7.07779e8 q^{7} +O(q^{10})\) \(q-3.35342e6 q^{5} +7.07779e8 q^{7} -8.75119e10 q^{11} -7.41212e11 q^{13} +6.82853e12 q^{17} +5.17730e13 q^{19} +3.13428e14 q^{23} -4.65592e14 q^{25} -1.46400e15 q^{29} -6.42150e15 q^{31} -2.37348e15 q^{35} -6.93987e15 q^{37} -3.25339e16 q^{41} +4.37536e16 q^{43} +5.34426e16 q^{47} -5.75946e16 q^{49} +1.19249e18 q^{53} +2.93464e17 q^{55} +4.48047e17 q^{59} -9.05611e17 q^{61} +2.48560e18 q^{65} -6.06820e17 q^{67} +2.18611e19 q^{71} -6.65250e19 q^{73} -6.19391e19 q^{77} -1.81938e18 q^{79} +2.58951e20 q^{83} -2.28989e19 q^{85} +1.80968e20 q^{89} -5.24614e20 q^{91} -1.73617e20 q^{95} +4.09632e20 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2108140 q^{5} + 444771792 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2108140 q^{5} + 444771792 q^{7} - 53806403320 q^{11} - 490366676932 q^{13} + 6593864672092 q^{17} + 19302397925320 q^{19} + 409737865776272 q^{23} - 940878149007650 q^{25} + 24\!\cdots\!60 q^{29}+ \cdots + 78\!\cdots\!88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.35342e6 −0.153569 −0.0767844 0.997048i \(-0.524465\pi\)
−0.0767844 + 0.997048i \(0.524465\pi\)
\(6\) 0 0
\(7\) 7.07779e8 0.947040 0.473520 0.880783i \(-0.342983\pi\)
0.473520 + 0.880783i \(0.342983\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −8.75119e10 −1.01729 −0.508644 0.860977i \(-0.669853\pi\)
−0.508644 + 0.860977i \(0.669853\pi\)
\(12\) 0 0
\(13\) −7.41212e11 −1.49120 −0.745602 0.666391i \(-0.767838\pi\)
−0.745602 + 0.666391i \(0.767838\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.82853e12 0.821511 0.410756 0.911746i \(-0.365265\pi\)
0.410756 + 0.911746i \(0.365265\pi\)
\(18\) 0 0
\(19\) 5.17730e13 1.93727 0.968635 0.248487i \(-0.0799334\pi\)
0.968635 + 0.248487i \(0.0799334\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.13428e14 1.57760 0.788798 0.614653i \(-0.210704\pi\)
0.788798 + 0.614653i \(0.210704\pi\)
\(24\) 0 0
\(25\) −4.65592e14 −0.976417
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.46400e15 −0.646195 −0.323097 0.946366i \(-0.604724\pi\)
−0.323097 + 0.946366i \(0.604724\pi\)
\(30\) 0 0
\(31\) −6.42150e15 −1.40714 −0.703572 0.710624i \(-0.748413\pi\)
−0.703572 + 0.710624i \(0.748413\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.37348e15 −0.145436
\(36\) 0 0
\(37\) −6.93987e15 −0.237265 −0.118632 0.992938i \(-0.537851\pi\)
−0.118632 + 0.992938i \(0.537851\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.25339e16 −0.378534 −0.189267 0.981926i \(-0.560611\pi\)
−0.189267 + 0.981926i \(0.560611\pi\)
\(42\) 0 0
\(43\) 4.37536e16 0.308741 0.154371 0.988013i \(-0.450665\pi\)
0.154371 + 0.988013i \(0.450665\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.34426e16 0.148204 0.0741020 0.997251i \(-0.476391\pi\)
0.0741020 + 0.997251i \(0.476391\pi\)
\(48\) 0 0
\(49\) −5.75946e16 −0.103115
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.19249e18 0.936611 0.468306 0.883567i \(-0.344865\pi\)
0.468306 + 0.883567i \(0.344865\pi\)
\(54\) 0 0
\(55\) 2.93464e17 0.156224
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.48047e17 0.114124 0.0570620 0.998371i \(-0.481827\pi\)
0.0570620 + 0.998371i \(0.481827\pi\)
\(60\) 0 0
\(61\) −9.05611e17 −0.162547 −0.0812734 0.996692i \(-0.525899\pi\)
−0.0812734 + 0.996692i \(0.525899\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.48560e18 0.229003
\(66\) 0 0
\(67\) −6.06820e17 −0.0406700 −0.0203350 0.999793i \(-0.506473\pi\)
−0.0203350 + 0.999793i \(0.506473\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.18611e19 0.797003 0.398501 0.917168i \(-0.369530\pi\)
0.398501 + 0.917168i \(0.369530\pi\)
\(72\) 0 0
\(73\) −6.65250e19 −1.81174 −0.905868 0.423559i \(-0.860781\pi\)
−0.905868 + 0.423559i \(0.860781\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.19391e19 −0.963413
\(78\) 0 0
\(79\) −1.81938e18 −0.0216191 −0.0108096 0.999942i \(-0.503441\pi\)
−0.0108096 + 0.999942i \(0.503441\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.58951e20 1.83188 0.915940 0.401316i \(-0.131447\pi\)
0.915940 + 0.401316i \(0.131447\pi\)
\(84\) 0 0
\(85\) −2.28989e19 −0.126159
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.80968e20 0.615187 0.307594 0.951518i \(-0.400476\pi\)
0.307594 + 0.951518i \(0.400476\pi\)
\(90\) 0 0
\(91\) −5.24614e20 −1.41223
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.73617e20 −0.297504
\(96\) 0 0
\(97\) 4.09632e20 0.564016 0.282008 0.959412i \(-0.409000\pi\)
0.282008 + 0.959412i \(0.409000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.49956e21 1.35080 0.675398 0.737454i \(-0.263972\pi\)
0.675398 + 0.737454i \(0.263972\pi\)
\(102\) 0 0
\(103\) 5.14179e20 0.376984 0.188492 0.982075i \(-0.439640\pi\)
0.188492 + 0.982075i \(0.439640\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.11062e21 −0.545801 −0.272900 0.962042i \(-0.587983\pi\)
−0.272900 + 0.962042i \(0.587983\pi\)
\(108\) 0 0
\(109\) −1.75592e21 −0.710437 −0.355219 0.934783i \(-0.615594\pi\)
−0.355219 + 0.934783i \(0.615594\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.38798e21 −1.49315 −0.746573 0.665303i \(-0.768302\pi\)
−0.746573 + 0.665303i \(0.768302\pi\)
\(114\) 0 0
\(115\) −1.05106e21 −0.242270
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.83309e21 0.778004
\(120\) 0 0
\(121\) 2.58090e20 0.0348758
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.16036e21 0.303516
\(126\) 0 0
\(127\) 1.11104e22 0.903212 0.451606 0.892217i \(-0.350851\pi\)
0.451606 + 0.892217i \(0.350851\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.53513e22 −1.48817 −0.744084 0.668086i \(-0.767114\pi\)
−0.744084 + 0.668086i \(0.767114\pi\)
\(132\) 0 0
\(133\) 3.66438e22 1.83467
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.99626e22 −0.732235 −0.366117 0.930569i \(-0.619313\pi\)
−0.366117 + 0.930569i \(0.619313\pi\)
\(138\) 0 0
\(139\) −2.94117e22 −0.926540 −0.463270 0.886217i \(-0.653324\pi\)
−0.463270 + 0.886217i \(0.653324\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.48649e22 1.51699
\(144\) 0 0
\(145\) 4.90942e21 0.0992354
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.21478e23 −1.84520 −0.922598 0.385762i \(-0.873939\pi\)
−0.922598 + 0.385762i \(0.873939\pi\)
\(150\) 0 0
\(151\) −5.95169e22 −0.785928 −0.392964 0.919554i \(-0.628550\pi\)
−0.392964 + 0.919554i \(0.628550\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.15340e22 0.216093
\(156\) 0 0
\(157\) −1.28748e23 −1.12926 −0.564630 0.825344i \(-0.690981\pi\)
−0.564630 + 0.825344i \(0.690981\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.21838e23 1.49405
\(162\) 0 0
\(163\) −5.66875e22 −0.335365 −0.167682 0.985841i \(-0.553628\pi\)
−0.167682 + 0.985841i \(0.553628\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.99516e23 0.915071 0.457535 0.889191i \(-0.348732\pi\)
0.457535 + 0.889191i \(0.348732\pi\)
\(168\) 0 0
\(169\) 3.02331e23 1.22369
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.56107e23 −1.12745 −0.563723 0.825964i \(-0.690632\pi\)
−0.563723 + 0.825964i \(0.690632\pi\)
\(174\) 0 0
\(175\) −3.29536e23 −0.924706
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.56436e23 −0.346243 −0.173122 0.984900i \(-0.555385\pi\)
−0.173122 + 0.984900i \(0.555385\pi\)
\(180\) 0 0
\(181\) −7.11852e23 −1.40205 −0.701027 0.713135i \(-0.747275\pi\)
−0.701027 + 0.713135i \(0.747275\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.32723e22 0.0364365
\(186\) 0 0
\(187\) −5.97578e23 −0.835714
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.15222e23 0.129029 0.0645143 0.997917i \(-0.479450\pi\)
0.0645143 + 0.997917i \(0.479450\pi\)
\(192\) 0 0
\(193\) 9.86701e23 0.990453 0.495227 0.868764i \(-0.335085\pi\)
0.495227 + 0.868764i \(0.335085\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.06615e23 0.329070 0.164535 0.986371i \(-0.447388\pi\)
0.164535 + 0.986371i \(0.447388\pi\)
\(198\) 0 0
\(199\) −1.80332e24 −1.31255 −0.656276 0.754521i \(-0.727869\pi\)
−0.656276 + 0.754521i \(0.727869\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.03619e24 −0.611972
\(204\) 0 0
\(205\) 1.09100e23 0.0581311
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.53075e24 −1.97076
\(210\) 0 0
\(211\) 3.74550e23 0.147416 0.0737080 0.997280i \(-0.476517\pi\)
0.0737080 + 0.997280i \(0.476517\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.46724e23 −0.0474131
\(216\) 0 0
\(217\) −4.54500e24 −1.33262
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.06139e24 −1.22504
\(222\) 0 0
\(223\) 3.09034e24 0.680465 0.340232 0.940341i \(-0.389494\pi\)
0.340232 + 0.940341i \(0.389494\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.67101e23 0.176685 0.0883426 0.996090i \(-0.471843\pi\)
0.0883426 + 0.996090i \(0.471843\pi\)
\(228\) 0 0
\(229\) −3.37848e24 −0.562922 −0.281461 0.959573i \(-0.590819\pi\)
−0.281461 + 0.959573i \(0.590819\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.86566e24 1.23161 0.615806 0.787898i \(-0.288831\pi\)
0.615806 + 0.787898i \(0.288831\pi\)
\(234\) 0 0
\(235\) −1.79215e23 −0.0227595
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.61276e24 −1.02252 −0.511258 0.859427i \(-0.670820\pi\)
−0.511258 + 0.859427i \(0.670820\pi\)
\(240\) 0 0
\(241\) −1.04750e25 −1.02088 −0.510442 0.859912i \(-0.670518\pi\)
−0.510442 + 0.859912i \(0.670518\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.93139e23 0.0158353
\(246\) 0 0
\(247\) −3.83747e25 −2.88887
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.60451e25 −1.65635 −0.828174 0.560471i \(-0.810620\pi\)
−0.828174 + 0.560471i \(0.810620\pi\)
\(252\) 0 0
\(253\) −2.74287e25 −1.60487
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.83013e25 0.908208 0.454104 0.890949i \(-0.349959\pi\)
0.454104 + 0.890949i \(0.349959\pi\)
\(258\) 0 0
\(259\) −4.91189e24 −0.224699
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.36593e24 −0.286874 −0.143437 0.989659i \(-0.545816\pi\)
−0.143437 + 0.989659i \(0.545816\pi\)
\(264\) 0 0
\(265\) −3.99893e24 −0.143834
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.31544e25 −0.711599 −0.355800 0.934562i \(-0.615791\pi\)
−0.355800 + 0.934562i \(0.615791\pi\)
\(270\) 0 0
\(271\) 1.17274e25 0.333445 0.166722 0.986004i \(-0.446682\pi\)
0.166722 + 0.986004i \(0.446682\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.07448e25 0.993297
\(276\) 0 0
\(277\) −5.46772e25 −1.23529 −0.617644 0.786458i \(-0.711913\pi\)
−0.617644 + 0.786458i \(0.711913\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.73811e24 −0.130955 −0.0654775 0.997854i \(-0.520857\pi\)
−0.0654775 + 0.997854i \(0.520857\pi\)
\(282\) 0 0
\(283\) −3.72254e25 −0.671555 −0.335778 0.941941i \(-0.608999\pi\)
−0.335778 + 0.941941i \(0.608999\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.30268e25 −0.358487
\(288\) 0 0
\(289\) −2.24631e25 −0.325119
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.42074e24 −0.0804406 −0.0402203 0.999191i \(-0.512806\pi\)
−0.0402203 + 0.999191i \(0.512806\pi\)
\(294\) 0 0
\(295\) −1.50249e24 −0.0175259
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.32317e26 −2.35252
\(300\) 0 0
\(301\) 3.09679e25 0.292390
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.03690e24 0.0249621
\(306\) 0 0
\(307\) −7.52469e25 −0.577478 −0.288739 0.957408i \(-0.593236\pi\)
−0.288739 + 0.957408i \(0.593236\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.48646e25 0.166570 0.0832850 0.996526i \(-0.473459\pi\)
0.0832850 + 0.996526i \(0.473459\pi\)
\(312\) 0 0
\(313\) −1.07554e26 −0.673615 −0.336808 0.941574i \(-0.609347\pi\)
−0.336808 + 0.941574i \(0.609347\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.82324e26 −1.54748 −0.773742 0.633501i \(-0.781617\pi\)
−0.773742 + 0.633501i \(0.781617\pi\)
\(318\) 0 0
\(319\) 1.28118e26 0.657366
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.53533e26 1.59149
\(324\) 0 0
\(325\) 3.45102e26 1.45604
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.78255e25 0.140355
\(330\) 0 0
\(331\) −8.70208e25 −0.302991 −0.151495 0.988458i \(-0.548409\pi\)
−0.151495 + 0.988458i \(0.548409\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.03492e24 0.00624565
\(336\) 0 0
\(337\) 1.22441e26 0.353030 0.176515 0.984298i \(-0.443518\pi\)
0.176515 + 0.984298i \(0.443518\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.61958e26 1.43147
\(342\) 0 0
\(343\) −4.36091e26 −1.04469
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.10647e26 −0.658882 −0.329441 0.944176i \(-0.606860\pi\)
−0.329441 + 0.944176i \(0.606860\pi\)
\(348\) 0 0
\(349\) −3.62929e26 −0.724695 −0.362347 0.932043i \(-0.618025\pi\)
−0.362347 + 0.932043i \(0.618025\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.02974e25 0.159971 0.0799854 0.996796i \(-0.474513\pi\)
0.0799854 + 0.996796i \(0.474513\pi\)
\(354\) 0 0
\(355\) −7.33096e25 −0.122395
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.84199e26 0.867100 0.433550 0.901130i \(-0.357261\pi\)
0.433550 + 0.901130i \(0.357261\pi\)
\(360\) 0 0
\(361\) 1.96623e27 2.75302
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.23087e26 0.278226
\(366\) 0 0
\(367\) 7.68446e26 0.904940 0.452470 0.891780i \(-0.350543\pi\)
0.452470 + 0.891780i \(0.350543\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.44022e26 0.887008
\(372\) 0 0
\(373\) −6.12745e26 −0.608607 −0.304304 0.952575i \(-0.598424\pi\)
−0.304304 + 0.952575i \(0.598424\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.08514e27 0.963609
\(378\) 0 0
\(379\) −1.02134e27 −0.857945 −0.428972 0.903318i \(-0.641124\pi\)
−0.428972 + 0.903318i \(0.641124\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.10822e27 −1.58609 −0.793045 0.609163i \(-0.791506\pi\)
−0.793045 + 0.609163i \(0.791506\pi\)
\(384\) 0 0
\(385\) 2.07708e26 0.147950
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.16494e26 −0.330061 −0.165030 0.986288i \(-0.552772\pi\)
−0.165030 + 0.986288i \(0.552772\pi\)
\(390\) 0 0
\(391\) 2.14025e27 1.29601
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.10113e24 0.00332002
\(396\) 0 0
\(397\) 2.07736e27 1.07204 0.536019 0.844206i \(-0.319927\pi\)
0.536019 + 0.844206i \(0.319927\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.03566e27 1.41006 0.705029 0.709179i \(-0.250934\pi\)
0.705029 + 0.709179i \(0.250934\pi\)
\(402\) 0 0
\(403\) 4.75969e27 2.09834
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.07321e26 0.241367
\(408\) 0 0
\(409\) 1.38404e27 0.522462 0.261231 0.965276i \(-0.415872\pi\)
0.261231 + 0.965276i \(0.415872\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.17118e26 0.108080
\(414\) 0 0
\(415\) −8.68370e26 −0.281320
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.05547e27 −0.602093 −0.301046 0.953610i \(-0.597336\pi\)
−0.301046 + 0.953610i \(0.597336\pi\)
\(420\) 0 0
\(421\) 4.61061e27 1.28468 0.642341 0.766419i \(-0.277963\pi\)
0.642341 + 0.766419i \(0.277963\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.17931e27 −0.802137
\(426\) 0 0
\(427\) −6.40972e26 −0.153938
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.49501e27 −1.19662 −0.598312 0.801264i \(-0.704161\pi\)
−0.598312 + 0.801264i \(0.704161\pi\)
\(432\) 0 0
\(433\) −5.65719e27 −1.17349 −0.586743 0.809773i \(-0.699590\pi\)
−0.586743 + 0.809773i \(0.699590\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.62271e28 3.05623
\(438\) 0 0
\(439\) −2.13975e27 −0.384136 −0.192068 0.981382i \(-0.561519\pi\)
−0.192068 + 0.981382i \(0.561519\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.22577e27 −0.852926 −0.426463 0.904505i \(-0.640241\pi\)
−0.426463 + 0.904505i \(0.640241\pi\)
\(444\) 0 0
\(445\) −6.06863e26 −0.0944736
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.58499e27 −0.508044 −0.254022 0.967198i \(-0.581754\pi\)
−0.254022 + 0.967198i \(0.581754\pi\)
\(450\) 0 0
\(451\) 2.84710e27 0.385079
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.75925e27 0.216875
\(456\) 0 0
\(457\) 1.08470e27 0.127700 0.0638498 0.997960i \(-0.479662\pi\)
0.0638498 + 0.997960i \(0.479662\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.61325e28 1.73317 0.866585 0.499029i \(-0.166310\pi\)
0.866585 + 0.499029i \(0.166310\pi\)
\(462\) 0 0
\(463\) −1.26030e28 −1.29382 −0.646909 0.762567i \(-0.723939\pi\)
−0.646909 + 0.762567i \(0.723939\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.01065e28 −0.947923 −0.473961 0.880546i \(-0.657176\pi\)
−0.473961 + 0.880546i \(0.657176\pi\)
\(468\) 0 0
\(469\) −4.29495e26 −0.0385162
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.82896e27 −0.314079
\(474\) 0 0
\(475\) −2.41051e28 −1.89158
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.85064e27 0.564134 0.282067 0.959395i \(-0.408980\pi\)
0.282067 + 0.959395i \(0.408980\pi\)
\(480\) 0 0
\(481\) 5.14391e27 0.353810
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.37367e27 −0.0866152
\(486\) 0 0
\(487\) 1.35819e28 0.820172 0.410086 0.912047i \(-0.365499\pi\)
0.410086 + 0.912047i \(0.365499\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.02246e28 −1.67496 −0.837482 0.546465i \(-0.815973\pi\)
−0.837482 + 0.546465i \(0.815973\pi\)
\(492\) 0 0
\(493\) −9.99700e27 −0.530856
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.54728e28 0.754793
\(498\) 0 0
\(499\) −1.52172e28 −0.711669 −0.355835 0.934549i \(-0.615803\pi\)
−0.355835 + 0.934549i \(0.615803\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9.52959e27 −0.409836 −0.204918 0.978779i \(-0.565693\pi\)
−0.204918 + 0.978779i \(0.565693\pi\)
\(504\) 0 0
\(505\) −5.02866e27 −0.207440
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.87204e28 −1.47029 −0.735146 0.677909i \(-0.762886\pi\)
−0.735146 + 0.677909i \(0.762886\pi\)
\(510\) 0 0
\(511\) −4.70850e28 −1.71579
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.72426e27 −0.0578931
\(516\) 0 0
\(517\) −4.67686e27 −0.150766
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.03085e26 −0.0238762 −0.0119381 0.999929i \(-0.503800\pi\)
−0.0119381 + 0.999929i \(0.503800\pi\)
\(522\) 0 0
\(523\) −1.91554e28 −0.547047 −0.273523 0.961865i \(-0.588189\pi\)
−0.273523 + 0.961865i \(0.588189\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.38494e28 −1.15598
\(528\) 0 0
\(529\) 5.87656e28 1.48881
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.41145e28 0.564472
\(534\) 0 0
\(535\) 3.72436e27 0.0838180
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.04021e27 0.104898
\(540\) 0 0
\(541\) −3.68313e27 −0.0737303 −0.0368651 0.999320i \(-0.511737\pi\)
−0.0368651 + 0.999320i \(0.511737\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.88833e27 0.109101
\(546\) 0 0
\(547\) −4.83617e28 −0.862253 −0.431127 0.902291i \(-0.641884\pi\)
−0.431127 + 0.902291i \(0.641884\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.57959e28 −1.25185
\(552\) 0 0
\(553\) −1.28772e27 −0.0204742
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.17549e28 0.910316 0.455158 0.890411i \(-0.349583\pi\)
0.455158 + 0.890411i \(0.349583\pi\)
\(558\) 0 0
\(559\) −3.24307e28 −0.460397
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.51350e28 0.462809 0.231405 0.972858i \(-0.425668\pi\)
0.231405 + 0.972858i \(0.425668\pi\)
\(564\) 0 0
\(565\) 1.80682e28 0.229301
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.45054e28 −0.170943 −0.0854716 0.996341i \(-0.527240\pi\)
−0.0854716 + 0.996341i \(0.527240\pi\)
\(570\) 0 0
\(571\) 6.07413e28 0.689930 0.344965 0.938616i \(-0.387891\pi\)
0.344965 + 0.938616i \(0.387891\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.45930e29 −1.54039
\(576\) 0 0
\(577\) 2.71266e28 0.276089 0.138044 0.990426i \(-0.455918\pi\)
0.138044 + 0.990426i \(0.455918\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.83280e29 1.73486
\(582\) 0 0
\(583\) −1.04357e29 −0.952804
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.51262e28 −0.213514 −0.106757 0.994285i \(-0.534047\pi\)
−0.106757 + 0.994285i \(0.534047\pi\)
\(588\) 0 0
\(589\) −3.32460e29 −2.72602
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.95530e29 1.49328 0.746638 0.665231i \(-0.231667\pi\)
0.746638 + 0.665231i \(0.231667\pi\)
\(594\) 0 0
\(595\) −1.62074e28 −0.119477
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.11818e29 0.768299 0.384149 0.923271i \(-0.374495\pi\)
0.384149 + 0.923271i \(0.374495\pi\)
\(600\) 0 0
\(601\) 2.32726e29 1.54405 0.772027 0.635590i \(-0.219243\pi\)
0.772027 + 0.635590i \(0.219243\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.65483e26 −0.00535583
\(606\) 0 0
\(607\) 2.39690e29 1.43274 0.716371 0.697720i \(-0.245802\pi\)
0.716371 + 0.697720i \(0.245802\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.96123e28 −0.221002
\(612\) 0 0
\(613\) 1.89238e29 1.02017 0.510086 0.860123i \(-0.329613\pi\)
0.510086 + 0.860123i \(0.329613\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.13109e29 −0.569510 −0.284755 0.958600i \(-0.591912\pi\)
−0.284755 + 0.958600i \(0.591912\pi\)
\(618\) 0 0
\(619\) 1.89565e29 0.922585 0.461293 0.887248i \(-0.347386\pi\)
0.461293 + 0.887248i \(0.347386\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.28086e29 0.582607
\(624\) 0 0
\(625\) 2.11413e29 0.929806
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.73891e28 −0.194916
\(630\) 0 0
\(631\) 1.39864e29 0.556415 0.278208 0.960521i \(-0.410260\pi\)
0.278208 + 0.960521i \(0.410260\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.72578e28 −0.138705
\(636\) 0 0
\(637\) 4.26898e28 0.153766
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.73898e28 0.261020 0.130510 0.991447i \(-0.458338\pi\)
0.130510 + 0.991447i \(0.458338\pi\)
\(642\) 0 0
\(643\) 2.02401e29 0.660691 0.330345 0.943860i \(-0.392835\pi\)
0.330345 + 0.943860i \(0.392835\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.36949e28 0.194809 0.0974046 0.995245i \(-0.468946\pi\)
0.0974046 + 0.995245i \(0.468946\pi\)
\(648\) 0 0
\(649\) −3.92094e28 −0.116097
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.78655e29 0.495938 0.247969 0.968768i \(-0.420237\pi\)
0.247969 + 0.968768i \(0.420237\pi\)
\(654\) 0 0
\(655\) 8.50137e28 0.228536
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.55707e29 −1.40136 −0.700678 0.713477i \(-0.747119\pi\)
−0.700678 + 0.713477i \(0.747119\pi\)
\(660\) 0 0
\(661\) 2.72969e29 0.666804 0.333402 0.942785i \(-0.391803\pi\)
0.333402 + 0.942785i \(0.391803\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.22882e29 −0.281749
\(666\) 0 0
\(667\) −4.58860e29 −1.01943
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.92518e28 0.165357
\(672\) 0 0
\(673\) 3.87928e29 0.784499 0.392250 0.919859i \(-0.371697\pi\)
0.392250 + 0.919859i \(0.371697\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.66988e29 1.45750 0.728748 0.684782i \(-0.240102\pi\)
0.728748 + 0.684782i \(0.240102\pi\)
\(678\) 0 0
\(679\) 2.89929e29 0.534145
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.57644e29 0.965917 0.482959 0.875643i \(-0.339562\pi\)
0.482959 + 0.875643i \(0.339562\pi\)
\(684\) 0 0
\(685\) 6.69429e28 0.112448
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.83890e29 −1.39668
\(690\) 0 0
\(691\) 6.52122e29 0.999561 0.499781 0.866152i \(-0.333414\pi\)
0.499781 + 0.866152i \(0.333414\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.86297e28 0.142288
\(696\) 0 0
\(697\) −2.22158e29 −0.310970
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.49391e29 −0.196917 −0.0984586 0.995141i \(-0.531391\pi\)
−0.0984586 + 0.995141i \(0.531391\pi\)
\(702\) 0 0
\(703\) −3.59297e29 −0.459646
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.06136e30 1.27926
\(708\) 0 0
\(709\) −1.42826e30 −1.67117 −0.835585 0.549361i \(-0.814871\pi\)
−0.835585 + 0.549361i \(0.814871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.01268e30 −2.21990
\(714\) 0 0
\(715\) −2.17519e29 −0.232962
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.67477e30 1.69162 0.845810 0.533484i \(-0.179118\pi\)
0.845810 + 0.533484i \(0.179118\pi\)
\(720\) 0 0
\(721\) 3.63925e29 0.357019
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.81628e29 0.630955
\(726\) 0 0
\(727\) −1.28121e30 −1.15215 −0.576073 0.817398i \(-0.695416\pi\)
−0.576073 + 0.817398i \(0.695416\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.98773e29 0.253634
\(732\) 0 0
\(733\) −3.55290e29 −0.293083 −0.146542 0.989205i \(-0.546814\pi\)
−0.146542 + 0.989205i \(0.546814\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.31040e28 0.0413732
\(738\) 0 0
\(739\) 3.02616e29 0.229153 0.114576 0.993414i \(-0.463449\pi\)
0.114576 + 0.993414i \(0.463449\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.53318e29 −0.252803 −0.126402 0.991979i \(-0.540343\pi\)
−0.126402 + 0.991979i \(0.540343\pi\)
\(744\) 0 0
\(745\) 4.07368e29 0.283365
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7.86071e29 −0.516895
\(750\) 0 0
\(751\) −1.66286e30 −1.06325 −0.531625 0.846980i \(-0.678419\pi\)
−0.531625 + 0.846980i \(0.678419\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.99585e29 0.120694
\(756\) 0 0
\(757\) −1.26493e30 −0.743979 −0.371989 0.928237i \(-0.621324\pi\)
−0.371989 + 0.928237i \(0.621324\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.19527e30 −1.77815 −0.889075 0.457762i \(-0.848651\pi\)
−0.889075 + 0.457762i \(0.848651\pi\)
\(762\) 0 0
\(763\) −1.24280e30 −0.672812
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.32098e29 −0.170182
\(768\) 0 0
\(769\) −2.81246e30 −1.40236 −0.701182 0.712983i \(-0.747344\pi\)
−0.701182 + 0.712983i \(0.747344\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.43052e30 −1.14766 −0.573831 0.818974i \(-0.694543\pi\)
−0.573831 + 0.818974i \(0.694543\pi\)
\(774\) 0 0
\(775\) 2.98980e30 1.37396
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.68438e30 −0.733323
\(780\) 0 0
\(781\) −1.91311e30 −0.810782
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.31746e29 0.173419
\(786\) 0 0
\(787\) 2.79697e30 1.09384 0.546919 0.837185i \(-0.315800\pi\)
0.546919 + 0.837185i \(0.315800\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.81350e30 −1.41407
\(792\) 0 0
\(793\) 6.71250e29 0.242390
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.37782e30 0.814456 0.407228 0.913327i \(-0.366496\pi\)
0.407228 + 0.913327i \(0.366496\pi\)
\(798\) 0 0
\(799\) 3.64934e29 0.121751
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.82173e30 1.84306
\(804\) 0 0
\(805\) −7.43916e29 −0.229439
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.13505e29 −0.179622 −0.0898108 0.995959i \(-0.528626\pi\)
−0.0898108 + 0.995959i \(0.528626\pi\)
\(810\) 0 0
\(811\) −4.24348e30 −1.21061 −0.605303 0.795995i \(-0.706948\pi\)
−0.605303 + 0.795995i \(0.706948\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.90097e29 0.0515016
\(816\) 0 0
\(817\) 2.26525e30 0.598116
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.33090e30 −0.584683 −0.292342 0.956314i \(-0.594434\pi\)
−0.292342 + 0.956314i \(0.594434\pi\)
\(822\) 0 0
\(823\) 4.92628e30 1.20454 0.602270 0.798292i \(-0.294263\pi\)
0.602270 + 0.798292i \(0.294263\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.48099e30 −0.808899 −0.404450 0.914560i \(-0.632537\pi\)
−0.404450 + 0.914560i \(0.632537\pi\)
\(828\) 0 0
\(829\) −7.46934e30 −1.69223 −0.846116 0.532999i \(-0.821065\pi\)
−0.846116 + 0.532999i \(0.821065\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.93286e29 −0.0847103
\(834\) 0 0
\(835\) −6.69061e29 −0.140526
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.84188e30 1.56646 0.783231 0.621731i \(-0.213570\pi\)
0.783231 + 0.621731i \(0.213570\pi\)
\(840\) 0 0
\(841\) −2.98953e30 −0.582432
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.01384e30 −0.187921
\(846\) 0 0
\(847\) 1.82670e29 0.0330288
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.17515e30 −0.374308
\(852\) 0 0
\(853\) −1.56244e30 −0.262324 −0.131162 0.991361i \(-0.541871\pi\)
−0.131162 + 0.991361i \(0.541871\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.39912e29 −0.0543336 −0.0271668 0.999631i \(-0.508649\pi\)
−0.0271668 + 0.999631i \(0.508649\pi\)
\(858\) 0 0
\(859\) −3.06417e30 −0.477953 −0.238976 0.971025i \(-0.576812\pi\)
−0.238976 + 0.971025i \(0.576812\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.16441e30 −0.172979 −0.0864896 0.996253i \(-0.527565\pi\)
−0.0864896 + 0.996253i \(0.527565\pi\)
\(864\) 0 0
\(865\) 1.19418e30 0.173141
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.59217e29 0.0219929
\(870\) 0 0
\(871\) 4.49783e29 0.0606474
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.23684e30 0.287442
\(876\) 0 0
\(877\) 1.22709e31 1.53950 0.769752 0.638343i \(-0.220380\pi\)
0.769752 + 0.638343i \(0.220380\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.15175e30 0.855392 0.427696 0.903923i \(-0.359325\pi\)
0.427696 + 0.903923i \(0.359325\pi\)
\(882\) 0 0
\(883\) 4.43259e30 0.517691 0.258845 0.965919i \(-0.416658\pi\)
0.258845 + 0.965919i \(0.416658\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.71592e31 1.91117 0.955586 0.294712i \(-0.0952238\pi\)
0.955586 + 0.294712i \(0.0952238\pi\)
\(888\) 0 0
\(889\) 7.86369e30 0.855378
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.76688e30 0.287111
\(894\) 0 0
\(895\) 5.24597e29 0.0531722
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.40110e30 0.909289
\(900\) 0 0
\(901\) 8.14298e30 0.769437
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.38714e30 0.215312
\(906\) 0 0
\(907\) 1.99778e31 1.76064 0.880322 0.474377i \(-0.157327\pi\)
0.880322 + 0.474377i \(0.157327\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.13275e31 −0.953219 −0.476610 0.879115i \(-0.658134\pi\)
−0.476610 + 0.879115i \(0.658134\pi\)
\(912\) 0 0
\(913\) −2.26613e31 −1.86355
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.79431e31 −1.40935
\(918\) 0 0
\(919\) 4.22159e30 0.324089 0.162044 0.986783i \(-0.448191\pi\)
0.162044 + 0.986783i \(0.448191\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.62037e31 −1.18849
\(924\) 0 0
\(925\) 3.23114e30 0.231669
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7.45447e30 −0.510801 −0.255400 0.966835i \(-0.582207\pi\)
−0.255400 + 0.966835i \(0.582207\pi\)
\(930\) 0 0
\(931\) −2.98184e30 −0.199762
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.00393e30 0.128340
\(936\) 0 0
\(937\) 2.86894e31 1.79662 0.898308 0.439366i \(-0.144797\pi\)
0.898308 + 0.439366i \(0.144797\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.96096e31 1.17430 0.587148 0.809480i \(-0.300251\pi\)
0.587148 + 0.809480i \(0.300251\pi\)
\(942\) 0 0
\(943\) −1.01970e31 −0.597174
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.20608e30 0.347650 0.173825 0.984777i \(-0.444387\pi\)
0.173825 + 0.984777i \(0.444387\pi\)
\(948\) 0 0
\(949\) 4.93092e31 2.70167
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.74365e31 1.43831 0.719156 0.694849i \(-0.244529\pi\)
0.719156 + 0.694849i \(0.244529\pi\)
\(954\) 0 0
\(955\) −3.86389e29 −0.0198148
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.41291e31 −0.693456
\(960\) 0 0
\(961\) 2.04101e31 0.980054
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.30883e30 −0.152103
\(966\) 0 0
\(967\) −2.94115e31 −1.32294 −0.661469 0.749973i \(-0.730067\pi\)
−0.661469 + 0.749973i \(0.730067\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.73435e30 0.160847 0.0804236 0.996761i \(-0.474373\pi\)
0.0804236 + 0.996761i \(0.474373\pi\)
\(972\) 0 0
\(973\) −2.08170e31 −0.877470
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.55570e30 −0.183934 −0.0919670 0.995762i \(-0.529315\pi\)
−0.0919670 + 0.995762i \(0.529315\pi\)
\(978\) 0 0
\(979\) −1.58369e31 −0.625823
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.81915e31 −1.82456 −0.912280 0.409567i \(-0.865680\pi\)
−0.912280 + 0.409567i \(0.865680\pi\)
\(984\) 0 0
\(985\) −1.36355e30 −0.0505349
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.37136e31 0.487069
\(990\) 0 0
\(991\) 2.54898e31 0.886324 0.443162 0.896441i \(-0.353857\pi\)
0.443162 + 0.896441i \(0.353857\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.04731e30 0.201567
\(996\) 0 0
\(997\) −4.55000e31 −1.48495 −0.742476 0.669873i \(-0.766349\pi\)
−0.742476 + 0.669873i \(0.766349\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.22.a.b.1.1 2
3.2 odd 2 8.22.a.a.1.1 2
12.11 even 2 16.22.a.e.1.2 2
24.5 odd 2 64.22.a.k.1.2 2
24.11 even 2 64.22.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.22.a.a.1.1 2 3.2 odd 2
16.22.a.e.1.2 2 12.11 even 2
64.22.a.h.1.1 2 24.11 even 2
64.22.a.k.1.2 2 24.5 odd 2
72.22.a.b.1.1 2 1.1 even 1 trivial