Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.574922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - x^{15} + x^{14} + 2 x^{12} - 4 x^{11} - 8 x^{9} + 4 x^{8} - 16 x^{7} - 32 x^{5} + 32 x^{4} + 64 x^{2} - 128 x + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2}\cdot 3^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - x^{15} + x^{14} + 2 x^{12} - 4 x^{11} - 8 x^{9} + 4 x^{8} - 16 x^{7} - 32 x^{5} + 32 x^{4} + 64 x^{2} - 128 x + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{15} - \nu^{14} - 3 \nu^{13} - 8 \nu^{12} + 2 \nu^{11} + 8 \nu^{10} - 16 \nu^{9} - 48 \nu^{8} - 12 \nu^{7} + 16 \nu^{6} + 16 \nu^{5} - 80 \nu^{4} + 256 \nu^{2} + 384 \nu - 128 ) / 384 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - \nu^{15} - \nu^{14} - 3 \nu^{13} - 6 \nu^{10} - 4 \nu^{9} - 4 \nu^{8} + 4 \nu^{7} + 8 \nu^{6} + 24 \nu^{4} + 80 \nu^{3} + 32 \nu^{2} + 32 \nu + 64 ) / 192 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{15} + \nu^{14} + 3 \nu^{13} + 4 \nu^{12} + 8 \nu^{11} + 6 \nu^{10} + 8 \nu^{9} + 4 \nu^{8} - 12 \nu^{7} - 24 \nu^{6} - 32 \nu^{5} - 72 \nu^{4} - 96 \nu^{3} - 128 \nu^{2} - 96 \nu - 256 ) / 192 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - \nu^{15} + \nu^{14} - \nu^{13} - 2 \nu^{11} + 4 \nu^{10} + 8 \nu^{8} - 4 \nu^{7} + 16 \nu^{6} + 32 \nu^{4} - 32 \nu^{3} - 64 \nu + 128 ) / 128 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - \nu^{15} - 3 \nu^{14} - 5 \nu^{13} - 12 \nu^{12} - 18 \nu^{11} - 28 \nu^{10} - 24 \nu^{9} - 24 \nu^{8} - 20 \nu^{7} + 64 \nu^{6} + 96 \nu^{5} + 160 \nu^{4} + 256 \nu^{3} + 384 \nu^{2} + 448 \nu + 512 ) / 384 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - \nu^{15} - \nu^{14} - 2 \nu^{13} - 3 \nu^{12} - 5 \nu^{11} - 4 \nu^{10} - 6 \nu^{9} + 8 \nu^{8} + 4 \nu^{7} + 16 \nu^{6} + 20 \nu^{5} + 64 \nu^{4} + 64 \nu^{3} + 80 \nu^{2} + 64 \nu + 128 ) / 96 \)
|
\(\beta_{8}\) | \(=\) |
\( ( \nu^{15} + \nu^{14} + 7 \nu^{13} + 14 \nu^{12} + 22 \nu^{11} + 20 \nu^{10} + 24 \nu^{9} + 16 \nu^{8} + 20 \nu^{7} - 40 \nu^{6} - 160 \nu^{5} - 272 \nu^{4} - 160 \nu^{3} - 128 \nu^{2} - 384 \nu - 640 ) / 384 \)
|
\(\beta_{9}\) | \(=\) |
\( ( \nu^{15} - 7 \nu^{14} - 9 \nu^{13} - 2 \nu^{12} - 10 \nu^{11} - 4 \nu^{10} - 16 \nu^{9} + 36 \nu^{7} + 88 \nu^{6} + 64 \nu^{5} + 112 \nu^{4} + 192 \nu^{3} + 448 \nu^{2} - 128 ) / 384 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - \nu^{15} - \nu^{14} - 7 \nu^{13} - 14 \nu^{12} - 22 \nu^{11} - 20 \nu^{10} - 24 \nu^{9} - 16 \nu^{8} - 20 \nu^{7} + 40 \nu^{6} + 160 \nu^{5} + 272 \nu^{4} + 160 \nu^{3} + 512 \nu^{2} + 384 \nu + 640 ) / 384 \)
|
\(\beta_{11}\) | \(=\) |
\( ( \nu^{15} - \nu^{14} + 4 \nu^{11} + \nu^{10} + 4 \nu^{9} - 2 \nu^{8} + 8 \nu^{7} + 20 \nu^{5} - 52 \nu^{4} - 56 \nu^{3} - 48 \nu^{2} + 16 \nu - 288 ) / 96 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - \nu^{15} + \nu^{14} - 4 \nu^{11} - \nu^{10} - 4 \nu^{9} + 2 \nu^{8} - 8 \nu^{7} - 20 \nu^{5} + 52 \nu^{4} - 40 \nu^{3} + 48 \nu^{2} - 16 \nu + 192 ) / 96 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 3 \nu^{15} - \nu^{14} + 9 \nu^{13} + 6 \nu^{12} + 26 \nu^{11} + 12 \nu^{10} + 16 \nu^{9} - 16 \nu^{8} + 44 \nu^{7} - 40 \nu^{6} - 32 \nu^{5} - 240 \nu^{4} - 64 \nu^{3} - 256 \nu^{2} - 128 \nu - 896 ) / 384 \)
|
\(\beta_{14}\) | \(=\) |
\( ( - 2 \nu^{15} + \nu^{14} - 5 \nu^{13} - 5 \nu^{12} - 16 \nu^{11} - 10 \nu^{10} - 28 \nu^{9} - 8 \nu^{8} - 32 \nu^{7} + 12 \nu^{6} + 64 \nu^{5} + 160 \nu^{4} + 96 \nu^{3} + 256 \nu^{2} + 256 \nu + 704 ) / 192 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 9 \nu^{15} + \nu^{14} - 9 \nu^{13} - 8 \nu^{12} - 42 \nu^{11} - 12 \nu^{10} - 24 \nu^{9} + 40 \nu^{8} - 52 \nu^{7} + 48 \nu^{6} + 96 \nu^{5} + 384 \nu^{4} + 192 \nu^{3} + 448 \nu^{2} + 64 \nu + 1664 ) / 384 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{10} + \beta_{8} \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{12} - \beta_{11} - 1 \)
|
\(\nu^{4}\) | \(=\) |
\( - \beta_{14} + \beta_{13} + \beta_{12} - \beta_{11} + \beta_{10} + \beta_{9} - 2 \beta_{8} - \beta_{6} + 2 \beta_{4} + \beta_{3} + \beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{15} + \beta_{14} + 2\beta_{13} - \beta_{12} + \beta_{11} + \beta_{10} - \beta_{7} + \beta_{5} - \beta_{2} \)
|
\(\nu^{6}\) | \(=\) |
\( -\beta_{15} + \beta_{13} - 2\beta_{10} + \beta_{9} - \beta_{7} + 5\beta_{6} + 5\beta_{5} - \beta_{3} - \beta_{2} + \beta_1 \)
|
\(\nu^{7}\) | \(=\) |
\( - 2 \beta_{15} + \beta_{14} + \beta_{13} + \beta_{12} + \beta_{11} + \beta_{10} - \beta_{9} + 2 \beta_{8} - 3 \beta_{6} - 10 \beta_{4} - \beta_{3} - 2 \beta_{2} + \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( - 3 \beta_{15} + 3 \beta_{14} - 4 \beta_{13} - 3 \beta_{12} + \beta_{11} + \beta_{10} - 2 \beta_{9} + 6 \beta_{8} + 7 \beta_{7} + \beta_{5} + 2 \beta_{4} - 4 \beta_{3} - 3 \beta_{2} + 2 \)
|
\(\nu^{9}\) | \(=\) |
\( 5 \beta_{15} - 12 \beta_{14} - 5 \beta_{13} - 2 \beta_{12} - 2 \beta_{11} + 10 \beta_{10} - \beta_{9} - 7 \beta_{7} - \beta_{6} - \beta_{5} + 5 \beta_{3} + \beta_{2} + 7 \beta _1 + 2 \)
|
\(\nu^{10}\) | \(=\) |
\( 6 \beta_{15} - 3 \beta_{14} + 5 \beta_{13} - 3 \beta_{12} - 7 \beta_{11} - 3 \beta_{10} + 7 \beta_{9} - 10 \beta_{8} - 11 \beta_{6} + 6 \beta_{4} - 5 \beta_{3} + 10 \beta_{2} + 5 \beta_1 \)
|
\(\nu^{11}\) | \(=\) |
\( - 7 \beta_{15} - \beta_{14} + 12 \beta_{13} + \beta_{12} - 3 \beta_{11} + 17 \beta_{10} - 2 \beta_{9} + 2 \beta_{8} + 11 \beta_{7} + 13 \beta_{5} + 26 \beta_{4} + 20 \beta_{3} + \beta_{2} + 26 \)
|
\(\nu^{12}\) | \(=\) |
\( 9 \beta_{15} + 12 \beta_{14} + 15 \beta_{13} + 2 \beta_{12} + 2 \beta_{11} - 6 \beta_{10} + 19 \beta_{9} - 27 \beta_{7} + 3 \beta_{6} + 3 \beta_{5} + 9 \beta_{3} - 19 \beta_{2} + 27 \beta _1 - 10 \)
|
\(\nu^{13}\) | \(=\) |
\( 14 \beta_{15} - 3 \beta_{14} + 45 \beta_{13} + 13 \beta_{12} - 7 \beta_{11} - 11 \beta_{10} + 7 \beta_{9} - 10 \beta_{8} + 29 \beta_{6} + 14 \beta_{4} - 29 \beta_{3} - 6 \beta_{2} + 5 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( - 47 \beta_{15} + 31 \beta_{14} - 28 \beta_{13} - 31 \beta_{12} - 11 \beta_{11} + 41 \beta_{10} - 42 \beta_{9} + 58 \beta_{8} - 13 \beta_{7} + 53 \beta_{5} - 78 \beta_{4} - 12 \beta_{3} - 31 \beta_{2} - 78 \)
|
\(\nu^{15}\) | \(=\) |
\( - 55 \beta_{15} + 12 \beta_{14} - 65 \beta_{13} - 22 \beta_{12} - 22 \beta_{11} + 10 \beta_{10} + 19 \beta_{9} + 5 \beta_{7} - 13 \beta_{6} - 13 \beta_{5} - 55 \beta_{3} - 19 \beta_{2} - 5 \beta _1 + 46 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1 - \beta_{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 |
|
−1.34532 | + | 0.436011i | 1.52768 | + | 0.816201i | 1.61979 | − | 1.17315i | −0.602794 | − | 0.348023i | −2.41110 | − | 0.431967i | 0.795065 | + | 1.37709i | −1.66763 | + | 2.28452i | 1.66763 | + | 2.49379i | 0.962695 | + | 0.205379i | ||||||||||||||||||||||||||||||||||||||||||||||||
13.2 | −1.12494 | − | 0.857038i | −0.986088 | + | 1.42395i | 0.530970 | + | 1.92823i | 1.19115 | + | 0.687709i | 2.32967 | − | 0.756738i | 1.80469 | + | 3.12581i | 1.05526 | − | 2.62420i | −1.05526 | − | 2.80828i | −0.750573 | − | 1.79449i | |||||||||||||||||||||||||||||||||||||||||||||||||
13.3 | −0.722180 | + | 1.21592i | 0.294546 | − | 1.70682i | −0.956913 | − | 1.75622i | 3.17262 | + | 1.83171i | 1.86264 | + | 1.59078i | −0.191926 | − | 0.332426i | 2.82649 | + | 0.104780i | −2.82649 | − | 1.00547i | −4.51841 | + | 2.53482i | |||||||||||||||||||||||||||||||||||||||||||||||||
13.4 | −0.179748 | − | 1.40274i | 0.986088 | − | 1.42395i | −1.93538 | + | 0.504281i | −1.19115 | − | 0.687709i | −2.17468 | − | 1.12728i | 1.80469 | + | 3.12581i | 1.05526 | + | 2.62420i | −1.05526 | − | 2.80828i | −0.750573 | + | 1.79449i | |||||||||||||||||||||||||||||||||||||||||||||||||
13.5 | 0.587625 | + | 1.28635i | 1.69028 | − | 0.378078i | −1.30939 | + | 1.51178i | −1.97542 | − | 1.14051i | 1.47959 | + | 1.95213i | −0.907824 | − | 1.57240i | −2.71411 | − | 0.795980i | 2.71411 | − | 1.27812i | 0.306290 | − | 3.21128i | |||||||||||||||||||||||||||||||||||||||||||||||||
13.6 | 0.820200 | + | 1.15207i | −1.69028 | + | 0.378078i | −0.654545 | + | 1.88986i | 1.97542 | + | 1.14051i | −1.82194 | − | 1.63723i | −0.907824 | − | 1.57240i | −2.71411 | + | 0.795980i | 2.71411 | − | 1.27812i | 0.306290 | + | 3.21128i | |||||||||||||||||||||||||||||||||||||||||||||||||
13.7 | 1.05026 | − | 0.947078i | −1.52768 | − | 0.816201i | 0.206086 | − | 1.98935i | 0.602794 | + | 0.348023i | −2.37747 | + | 0.589613i | 0.795065 | + | 1.37709i | −1.66763 | − | 2.28452i | 1.66763 | + | 2.49379i | 0.962695 | − | 0.205379i | |||||||||||||||||||||||||||||||||||||||||||||||||
13.8 | 1.41411 | − | 0.0174668i | −0.294546 | + | 1.70682i | 1.99939 | − | 0.0493999i | −3.17262 | − | 1.83171i | −0.386706 | + | 2.41877i | −0.191926 | − | 0.332426i | 2.82649 | − | 0.104780i | −2.82649 | − | 1.00547i | −4.51841 | − | 2.53482i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.1 | −1.34532 | − | 0.436011i | 1.52768 | − | 0.816201i | 1.61979 | + | 1.17315i | −0.602794 | + | 0.348023i | −2.41110 | + | 0.431967i | 0.795065 | − | 1.37709i | −1.66763 | − | 2.28452i | 1.66763 | − | 2.49379i | 0.962695 | − | 0.205379i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.2 | −1.12494 | + | 0.857038i | −0.986088 | − | 1.42395i | 0.530970 | − | 1.92823i | 1.19115 | − | 0.687709i | 2.32967 | + | 0.756738i | 1.80469 | − | 3.12581i | 1.05526 | + | 2.62420i | −1.05526 | + | 2.80828i | −0.750573 | + | 1.79449i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.3 | −0.722180 | − | 1.21592i | 0.294546 | + | 1.70682i | −0.956913 | + | 1.75622i | 3.17262 | − | 1.83171i | 1.86264 | − | 1.59078i | −0.191926 | + | 0.332426i | 2.82649 | − | 0.104780i | −2.82649 | + | 1.00547i | −4.51841 | − | 2.53482i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.4 | −0.179748 | + | 1.40274i | 0.986088 | + | 1.42395i | −1.93538 | − | 0.504281i | −1.19115 | + | 0.687709i | −2.17468 | + | 1.12728i | 1.80469 | − | 3.12581i | 1.05526 | − | 2.62420i | −1.05526 | + | 2.80828i | −0.750573 | − | 1.79449i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.5 | 0.587625 | − | 1.28635i | 1.69028 | + | 0.378078i | −1.30939 | − | 1.51178i | −1.97542 | + | 1.14051i | 1.47959 | − | 1.95213i | −0.907824 | + | 1.57240i | −2.71411 | + | 0.795980i | 2.71411 | + | 1.27812i | 0.306290 | + | 3.21128i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.6 | 0.820200 | − | 1.15207i | −1.69028 | − | 0.378078i | −0.654545 | − | 1.88986i | 1.97542 | − | 1.14051i | −1.82194 | + | 1.63723i | −0.907824 | + | 1.57240i | −2.71411 | − | 0.795980i | 2.71411 | + | 1.27812i | 0.306290 | − | 3.21128i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.7 | 1.05026 | + | 0.947078i | −1.52768 | + | 0.816201i | 0.206086 | + | 1.98935i | 0.602794 | − | 0.348023i | −2.37747 | − | 0.589613i | 0.795065 | − | 1.37709i | −1.66763 | + | 2.28452i | 1.66763 | − | 2.49379i | 0.962695 | + | 0.205379i | |||||||||||||||||||||||||||||||||||||||||||||||||
61.8 | 1.41411 | + | 0.0174668i | −0.294546 | − | 1.70682i | 1.99939 | + | 0.0493999i | −3.17262 | + | 1.83171i | −0.386706 | − | 2.41877i | −0.191926 | + | 0.332426i | 2.82649 | + | 0.104780i | −2.82649 | + | 1.00547i | −4.51841 | + | 2.53482i | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
72.n | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.2.n.b | ✓ | 16 |
3.b | odd | 2 | 1 | 216.2.n.b | 16 | ||
4.b | odd | 2 | 1 | 288.2.r.b | 16 | ||
8.b | even | 2 | 1 | inner | 72.2.n.b | ✓ | 16 |
8.d | odd | 2 | 1 | 288.2.r.b | 16 | ||
9.c | even | 3 | 1 | inner | 72.2.n.b | ✓ | 16 |
9.c | even | 3 | 1 | 648.2.d.j | 8 | ||
9.d | odd | 6 | 1 | 216.2.n.b | 16 | ||
9.d | odd | 6 | 1 | 648.2.d.k | 8 | ||
12.b | even | 2 | 1 | 864.2.r.b | 16 | ||
24.f | even | 2 | 1 | 864.2.r.b | 16 | ||
24.h | odd | 2 | 1 | 216.2.n.b | 16 | ||
36.f | odd | 6 | 1 | 288.2.r.b | 16 | ||
36.f | odd | 6 | 1 | 2592.2.d.j | 8 | ||
36.h | even | 6 | 1 | 864.2.r.b | 16 | ||
36.h | even | 6 | 1 | 2592.2.d.k | 8 | ||
72.j | odd | 6 | 1 | 216.2.n.b | 16 | ||
72.j | odd | 6 | 1 | 648.2.d.k | 8 | ||
72.l | even | 6 | 1 | 864.2.r.b | 16 | ||
72.l | even | 6 | 1 | 2592.2.d.k | 8 | ||
72.n | even | 6 | 1 | inner | 72.2.n.b | ✓ | 16 |
72.n | even | 6 | 1 | 648.2.d.j | 8 | ||
72.p | odd | 6 | 1 | 288.2.r.b | 16 | ||
72.p | odd | 6 | 1 | 2592.2.d.j | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.2.n.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
72.2.n.b | ✓ | 16 | 8.b | even | 2 | 1 | inner |
72.2.n.b | ✓ | 16 | 9.c | even | 3 | 1 | inner |
72.2.n.b | ✓ | 16 | 72.n | even | 6 | 1 | inner |
216.2.n.b | 16 | 3.b | odd | 2 | 1 | ||
216.2.n.b | 16 | 9.d | odd | 6 | 1 | ||
216.2.n.b | 16 | 24.h | odd | 2 | 1 | ||
216.2.n.b | 16 | 72.j | odd | 6 | 1 | ||
288.2.r.b | 16 | 4.b | odd | 2 | 1 | ||
288.2.r.b | 16 | 8.d | odd | 2 | 1 | ||
288.2.r.b | 16 | 36.f | odd | 6 | 1 | ||
288.2.r.b | 16 | 72.p | odd | 6 | 1 | ||
648.2.d.j | 8 | 9.c | even | 3 | 1 | ||
648.2.d.j | 8 | 72.n | even | 6 | 1 | ||
648.2.d.k | 8 | 9.d | odd | 6 | 1 | ||
648.2.d.k | 8 | 72.j | odd | 6 | 1 | ||
864.2.r.b | 16 | 12.b | even | 2 | 1 | ||
864.2.r.b | 16 | 24.f | even | 2 | 1 | ||
864.2.r.b | 16 | 36.h | even | 6 | 1 | ||
864.2.r.b | 16 | 72.l | even | 6 | 1 | ||
2592.2.d.j | 8 | 36.f | odd | 6 | 1 | ||
2592.2.d.j | 8 | 72.p | odd | 6 | 1 | ||
2592.2.d.k | 8 | 36.h | even | 6 | 1 | ||
2592.2.d.k | 8 | 72.l | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{16} - 21T_{5}^{14} + 326T_{5}^{12} - 2049T_{5}^{10} + 9318T_{5}^{8} - 18357T_{5}^{6} + 26129T_{5}^{4} - 11712T_{5}^{2} + 4096 \)
acting on \(S_{2}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} - T^{15} + T^{14} + 2 T^{12} - 4 T^{11} + \cdots + 256 \)
$3$
\( T^{16} - T^{14} - 2 T^{12} + 9 T^{10} + \cdots + 6561 \)
$5$
\( T^{16} - 21 T^{14} + 326 T^{12} + \cdots + 4096 \)
$7$
\( (T^{8} - 3 T^{7} + 14 T^{6} - 3 T^{5} + \cdots + 16)^{2} \)
$11$
\( T^{16} - 40 T^{14} + 1134 T^{12} + \cdots + 10556001 \)
$13$
\( T^{16} - 53 T^{14} + 2094 T^{12} + \cdots + 20736 \)
$17$
\( (T^{4} + 7 T^{3} - 2 T^{2} - 48 T + 36)^{4} \)
$19$
\( (T^{8} + 83 T^{6} + 1660 T^{4} + \cdots + 5184)^{2} \)
$23$
\( (T^{8} + 5 T^{7} + 60 T^{6} + 275 T^{5} + \cdots + 90000)^{2} \)
$29$
\( T^{16} - 109 T^{14} + \cdots + 4032758016 \)
$31$
\( (T^{8} + 5 T^{7} + 76 T^{6} + 155 T^{5} + \cdots + 92416)^{2} \)
$37$
\( (T^{8} + 152 T^{6} + 8080 T^{4} + \cdots + 1327104)^{2} \)
$41$
\( (T^{8} + 4 T^{7} + 90 T^{6} + 616 T^{5} + \cdots + 335241)^{2} \)
$43$
\( T^{16} - 20 T^{14} + 294 T^{12} + \cdots + 81 \)
$47$
\( (T^{8} - 3 T^{7} + 90 T^{6} + \cdots + 2178576)^{2} \)
$53$
\( (T^{8} + 160 T^{6} + 7744 T^{4} + \cdots + 451584)^{2} \)
$59$
\( T^{16} - 108 T^{14} + \cdots + 131079601 \)
$61$
\( T^{16} - 165 T^{14} + \cdots + 176319369216 \)
$67$
\( T^{16} - 240 T^{14} + \cdots + 9881774573841 \)
$71$
\( (T^{4} - 18 T^{3} + 48 T^{2} + 252 T - 864)^{4} \)
$73$
\( (T^{4} + 11 T^{3} - 14 T^{2} - 84 T + 36)^{4} \)
$79$
\( (T^{8} + 15 T^{7} + 236 T^{6} + 1065 T^{5} + \cdots + 3136)^{2} \)
$83$
\( T^{16} - 105 T^{14} + \cdots + 31713911056 \)
$89$
\( (T^{4} - 16 T^{3} + 52 T^{2} + 156 T - 504)^{4} \)
$97$
\( (T^{8} + 134 T^{6} + 1560 T^{5} + \cdots + 1324801)^{2} \)
show more
show less