Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.574922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1 + \zeta_{12}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 |
|
−1.36603 | − | 0.366025i | −0.866025 | − | 1.50000i | 1.73205 | + | 1.00000i | −1.73205 | − | 1.00000i | 0.633975 | + | 2.36603i | −2.00000 | − | 3.46410i | −2.00000 | − | 2.00000i | −1.50000 | + | 2.59808i | 2.00000 | + | 2.00000i | ||||||||||||
13.2 | 0.366025 | − | 1.36603i | 0.866025 | + | 1.50000i | −1.73205 | − | 1.00000i | 1.73205 | + | 1.00000i | 2.36603 | − | 0.633975i | −2.00000 | − | 3.46410i | −2.00000 | + | 2.00000i | −1.50000 | + | 2.59808i | 2.00000 | − | 2.00000i | |||||||||||||
61.1 | −1.36603 | + | 0.366025i | −0.866025 | + | 1.50000i | 1.73205 | − | 1.00000i | −1.73205 | + | 1.00000i | 0.633975 | − | 2.36603i | −2.00000 | + | 3.46410i | −2.00000 | + | 2.00000i | −1.50000 | − | 2.59808i | 2.00000 | − | 2.00000i | |||||||||||||
61.2 | 0.366025 | + | 1.36603i | 0.866025 | − | 1.50000i | −1.73205 | + | 1.00000i | 1.73205 | − | 1.00000i | 2.36603 | + | 0.633975i | −2.00000 | + | 3.46410i | −2.00000 | − | 2.00000i | −1.50000 | − | 2.59808i | 2.00000 | + | 2.00000i | |||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
72.n | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.2.n.a | ✓ | 4 |
3.b | odd | 2 | 1 | 216.2.n.a | 4 | ||
4.b | odd | 2 | 1 | 288.2.r.a | 4 | ||
8.b | even | 2 | 1 | inner | 72.2.n.a | ✓ | 4 |
8.d | odd | 2 | 1 | 288.2.r.a | 4 | ||
9.c | even | 3 | 1 | inner | 72.2.n.a | ✓ | 4 |
9.c | even | 3 | 1 | 648.2.d.d | 2 | ||
9.d | odd | 6 | 1 | 216.2.n.a | 4 | ||
9.d | odd | 6 | 1 | 648.2.d.a | 2 | ||
12.b | even | 2 | 1 | 864.2.r.a | 4 | ||
24.f | even | 2 | 1 | 864.2.r.a | 4 | ||
24.h | odd | 2 | 1 | 216.2.n.a | 4 | ||
36.f | odd | 6 | 1 | 288.2.r.a | 4 | ||
36.f | odd | 6 | 1 | 2592.2.d.b | 2 | ||
36.h | even | 6 | 1 | 864.2.r.a | 4 | ||
36.h | even | 6 | 1 | 2592.2.d.a | 2 | ||
72.j | odd | 6 | 1 | 216.2.n.a | 4 | ||
72.j | odd | 6 | 1 | 648.2.d.a | 2 | ||
72.l | even | 6 | 1 | 864.2.r.a | 4 | ||
72.l | even | 6 | 1 | 2592.2.d.a | 2 | ||
72.n | even | 6 | 1 | inner | 72.2.n.a | ✓ | 4 |
72.n | even | 6 | 1 | 648.2.d.d | 2 | ||
72.p | odd | 6 | 1 | 288.2.r.a | 4 | ||
72.p | odd | 6 | 1 | 2592.2.d.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.2.n.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
72.2.n.a | ✓ | 4 | 8.b | even | 2 | 1 | inner |
72.2.n.a | ✓ | 4 | 9.c | even | 3 | 1 | inner |
72.2.n.a | ✓ | 4 | 72.n | even | 6 | 1 | inner |
216.2.n.a | 4 | 3.b | odd | 2 | 1 | ||
216.2.n.a | 4 | 9.d | odd | 6 | 1 | ||
216.2.n.a | 4 | 24.h | odd | 2 | 1 | ||
216.2.n.a | 4 | 72.j | odd | 6 | 1 | ||
288.2.r.a | 4 | 4.b | odd | 2 | 1 | ||
288.2.r.a | 4 | 8.d | odd | 2 | 1 | ||
288.2.r.a | 4 | 36.f | odd | 6 | 1 | ||
288.2.r.a | 4 | 72.p | odd | 6 | 1 | ||
648.2.d.a | 2 | 9.d | odd | 6 | 1 | ||
648.2.d.a | 2 | 72.j | odd | 6 | 1 | ||
648.2.d.d | 2 | 9.c | even | 3 | 1 | ||
648.2.d.d | 2 | 72.n | even | 6 | 1 | ||
864.2.r.a | 4 | 12.b | even | 2 | 1 | ||
864.2.r.a | 4 | 24.f | even | 2 | 1 | ||
864.2.r.a | 4 | 36.h | even | 6 | 1 | ||
864.2.r.a | 4 | 72.l | even | 6 | 1 | ||
2592.2.d.a | 2 | 36.h | even | 6 | 1 | ||
2592.2.d.a | 2 | 72.l | even | 6 | 1 | ||
2592.2.d.b | 2 | 36.f | odd | 6 | 1 | ||
2592.2.d.b | 2 | 72.p | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 4T_{5}^{2} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 2 T^{3} + 2 T^{2} + 4 T + 4 \)
$3$
\( T^{4} + 3T^{2} + 9 \)
$5$
\( T^{4} - 4T^{2} + 16 \)
$7$
\( (T^{2} + 4 T + 16)^{2} \)
$11$
\( T^{4} - 9T^{2} + 81 \)
$13$
\( T^{4} - 4T^{2} + 16 \)
$17$
\( (T - 5)^{4} \)
$19$
\( (T^{2} + 1)^{2} \)
$23$
\( (T^{2} + 2 T + 4)^{2} \)
$29$
\( T^{4} \)
$31$
\( (T^{2} - 4 T + 16)^{2} \)
$37$
\( (T^{2} + 4)^{2} \)
$41$
\( (T^{2} - 5 T + 25)^{2} \)
$43$
\( T^{4} - 121 T^{2} + 14641 \)
$47$
\( (T^{2} - 6 T + 36)^{2} \)
$53$
\( T^{4} \)
$59$
\( T^{4} - T^{2} + 1 \)
$61$
\( T^{4} - 144 T^{2} + 20736 \)
$67$
\( T^{4} - 9T^{2} + 81 \)
$71$
\( (T + 6)^{4} \)
$73$
\( (T - 9)^{4} \)
$79$
\( (T^{2} - 14 T + 196)^{2} \)
$83$
\( T^{4} - 16T^{2} + 256 \)
$89$
\( (T + 14)^{4} \)
$97$
\( (T^{2} + T + 1)^{2} \)
show more
show less