Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.574922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - 3 x^{15} + 7 x^{14} - 12 x^{13} + 16 x^{12} - 12 x^{11} - 8 x^{10} + 36 x^{9} - 68 x^{8} + 72 x^{7} - 32 x^{6} - 96 x^{5} + 256 x^{4} - 384 x^{3} + 448 x^{2} - 384 x + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 3 x^{15} + 7 x^{14} - 12 x^{13} + 16 x^{12} - 12 x^{11} - 8 x^{10} + 36 x^{9} - 68 x^{8} + 72 x^{7} - 32 x^{6} - 96 x^{5} + 256 x^{4} - 384 x^{3} + 448 x^{2} - 384 x + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{15} - 13 \nu^{14} + 11 \nu^{13} + 4 \nu^{12} - 38 \nu^{11} + 60 \nu^{10} - 104 \nu^{9} + 68 \nu^{8} + 148 \nu^{7} - 344 \nu^{6} + 440 \nu^{5} - 240 \nu^{4} - 32 \nu^{3} + 608 \nu^{2} - 1152 \nu + 1280 ) / 896 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{15} + \nu^{14} + 25 \nu^{13} - 38 \nu^{12} + 46 \nu^{11} - 24 \nu^{10} + 8 \nu^{9} + 68 \nu^{8} - 244 \nu^{7} + 272 \nu^{6} - 8 \nu^{5} - 128 \nu^{4} + 416 \nu^{3} - 1184 \nu^{2} + 1088 \nu - 512 ) / 896 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - \nu^{15} + 6 \nu^{14} - 11 \nu^{13} + 24 \nu^{12} - 39 \nu^{11} + 10 \nu^{10} + 20 \nu^{9} - 124 \nu^{8} + 160 \nu^{7} - 160 \nu^{6} - 20 \nu^{5} + 240 \nu^{4} - 528 \nu^{3} + 848 \nu^{2} - 640 \nu + 512 ) / 448 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 3 \nu^{15} - 11 \nu^{14} + 47 \nu^{13} - 58 \nu^{12} + 40 \nu^{11} + 40 \nu^{10} - 144 \nu^{9} + 316 \nu^{8} - 340 \nu^{7} - 80 \nu^{6} + 592 \nu^{5} - 1168 \nu^{4} + 1248 \nu^{3} - 1088 \nu^{2} + \cdots + 1152 ) / 896 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 5 \nu^{15} + 23 \nu^{14} - 13 \nu^{13} - 6 \nu^{12} + 50 \nu^{11} - 132 \nu^{10} + 240 \nu^{9} - 116 \nu^{8} - 236 \nu^{7} + 656 \nu^{6} - 856 \nu^{5} + 752 \nu^{4} - 288 \nu^{3} - 1696 \nu^{2} + \cdots - 1920 ) / 896 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 3 \nu^{15} + 4 \nu^{14} - 5 \nu^{13} + 2 \nu^{12} + 23 \nu^{11} - 40 \nu^{10} + 32 \nu^{9} + 20 \nu^{8} - 24 \nu^{7} + 80 \nu^{6} - 60 \nu^{5} + 104 \nu^{4} + 208 \nu^{3} - 144 \nu^{2} - 352 \nu + 192 ) / 448 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 3 \nu^{15} + 3 \nu^{14} - 9 \nu^{13} + 26 \nu^{12} - 30 \nu^{11} + 12 \nu^{10} + 52 \nu^{9} - 132 \nu^{8} + 164 \nu^{7} - 80 \nu^{6} - 136 \nu^{5} + 400 \nu^{4} - 656 \nu^{3} + 704 \nu^{2} - 320 \nu - 192 ) / 448 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 4 \nu^{15} + 17 \nu^{14} - 37 \nu^{13} + 19 \nu^{12} + 12 \nu^{11} - 86 \nu^{10} + 192 \nu^{9} - 216 \nu^{8} + 52 \nu^{7} + 340 \nu^{6} - 584 \nu^{5} + 792 \nu^{4} - 544 \nu^{3} - 192 \nu^{2} + \cdots - 1088 ) / 448 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 5 \nu^{15} - 9 \nu^{14} + 27 \nu^{13} - 36 \nu^{12} + 34 \nu^{11} - 8 \nu^{10} - 72 \nu^{9} + 172 \nu^{8} - 156 \nu^{7} + 72 \nu^{6} + 184 \nu^{5} - 640 \nu^{4} + 736 \nu^{3} - 768 \nu^{2} + 512 \nu - 320 ) / 448 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 5 \nu^{15} - 2 \nu^{14} - 8 \nu^{13} + 27 \nu^{12} - 36 \nu^{11} + 48 \nu^{10} - 16 \nu^{9} - 108 \nu^{8} + 208 \nu^{7} - 236 \nu^{6} + 72 \nu^{5} + 144 \nu^{4} - 496 \nu^{3} + 800 \nu^{2} - 384 \nu + 128 ) / 448 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 6 \nu^{15} + 15 \nu^{14} - 24 \nu^{13} + 18 \nu^{12} - 3 \nu^{11} - 66 \nu^{10} + 120 \nu^{9} - 128 \nu^{8} - 20 \nu^{7} + 160 \nu^{6} - 260 \nu^{5} + 432 \nu^{4} - 480 \nu^{3} + 48 \nu^{2} + 192 \nu + 384 ) / 448 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 5 \nu^{15} - 16 \nu^{14} + 48 \nu^{13} - 71 \nu^{12} + 76 \nu^{11} - 22 \nu^{10} - 100 \nu^{9} + 284 \nu^{8} - 408 \nu^{7} + 212 \nu^{6} + 184 \nu^{5} - 920 \nu^{4} + 1520 \nu^{3} - 1888 \nu^{2} + \cdots - 768 ) / 448 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 3 \nu^{14} - 7 \nu^{13} + 15 \nu^{12} - 22 \nu^{11} + 16 \nu^{10} + 4 \nu^{9} - 56 \nu^{8} + 92 \nu^{7} - 116 \nu^{6} + 32 \nu^{5} + 144 \nu^{4} - 352 \nu^{3} + 512 \nu^{2} - 448 \nu + 384 ) / 64 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 3 \nu^{15} - 18 \nu^{14} + 47 \nu^{13} - 100 \nu^{12} + 117 \nu^{11} - 100 \nu^{10} - 60 \nu^{9} + 316 \nu^{8} - 592 \nu^{7} + 648 \nu^{6} - 52 \nu^{5} - 888 \nu^{4} + 2144 \nu^{3} - 2768 \nu^{2} + \cdots - 1536 ) / 448 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{11} + \beta_{8} - \beta_{6} - \beta_{2} + \beta_1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{15} - \beta_{13} - \beta_{12} + \beta_{11} - \beta_{10} + \beta_{7} + \beta_{6} + 2\beta_{5} + \beta_{4} - \beta_{3} - 1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{15} + \beta_{14} - \beta_{12} - \beta_{10} + \beta_{7} + \beta_{6} - \beta_{4} + \beta_{2} - 1 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{15} - 2 \beta_{13} + \beta_{12} + 2 \beta_{11} + \beta_{7} + 2 \beta_{5} - \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + \beta _1 - 5 \)
|
\(\nu^{6}\) | \(=\) |
\( 2 \beta_{15} - \beta_{14} - 6 \beta_{13} + 2 \beta_{11} + \beta_{10} - 2 \beta_{9} + \beta_{6} + 2 \beta_{5} + 2 \beta_{3} - \beta_{2} + \beta_1 \)
|
\(\nu^{7}\) | \(=\) |
\( - \beta_{15} - \beta_{14} - 2 \beta_{13} - 3 \beta_{12} + 3 \beta_{10} + 2 \beta_{9} - 2 \beta_{8} + \beta_{7} + \beta_{6} + 3 \beta_{4} + 2 \beta_{3} + 3 \beta_{2} + 2 \beta _1 + 3 \)
|
\(\nu^{8}\) | \(=\) |
\( \beta_{15} + 2 \beta_{14} - 2 \beta_{13} - 3 \beta_{12} - 4 \beta_{11} + 2 \beta_{10} + 2 \beta_{8} + \beta_{7} + 4 \beta_{6} + 2 \beta_{5} - 5 \beta_{4} - 6 \beta_{3} + 2 \beta_{2} + 5 \beta _1 - 1 \)
|
\(\nu^{9}\) | \(=\) |
\( - 2 \beta_{15} - 3 \beta_{14} - 4 \beta_{11} - 3 \beta_{10} + 6 \beta_{9} + 12 \beta_{8} - 3 \beta_{6} + 14 \beta_{5} - 4 \beta_{3} + 5 \beta_{2} + \beta _1 - 4 \)
|
\(\nu^{10}\) | \(=\) |
\( - \beta_{15} - 3 \beta_{14} - 6 \beta_{13} - 7 \beta_{12} - 7 \beta_{10} + 2 \beta_{9} + 2 \beta_{8} - 3 \beta_{7} - \beta_{6} + 12 \beta_{5} - \beta_{4} + 2 \beta_{3} - 7 \beta_{2} + 7 \)
|
\(\nu^{11}\) | \(=\) |
\( - 17 \beta_{15} - 4 \beta_{14} + 18 \beta_{13} + 7 \beta_{12} - 8 \beta_{11} + 4 \beta_{10} + 4 \beta_{9} + 2 \beta_{8} + 3 \beta_{7} - 26 \beta_{6} - 22 \beta_{5} - 7 \beta_{4} + 22 \beta_{3} - 16 \beta_{2} + 9 \beta _1 + 21 \)
|
\(\nu^{12}\) | \(=\) |
\( 8 \beta_{15} - 11 \beta_{14} - 24 \beta_{13} + 18 \beta_{12} + 40 \beta_{11} - 7 \beta_{10} - 34 \beta_{9} + 18 \beta_{7} + 21 \beta_{6} + 10 \beta_{5} - 2 \beta_{4} - 4 \beta_{3} - 11 \beta_{2} + 35 \beta _1 - 22 \)
|
\(\nu^{13}\) | \(=\) |
\( - 5 \beta_{15} - 13 \beta_{14} - 6 \beta_{13} + \beta_{12} - \beta_{10} - 18 \beta_{9} + 18 \beta_{8} + 13 \beta_{7} + 5 \beta_{6} + 31 \beta_{4} + 26 \beta_{3} - \beta_{2} + 38 \beta _1 - 1 \)
|
\(\nu^{14}\) | \(=\) |
\( 17 \beta_{15} + 18 \beta_{14} - 34 \beta_{13} - 43 \beta_{12} + 16 \beta_{11} + 18 \beta_{10} - 42 \beta_{8} + 25 \beta_{7} + 48 \beta_{6} + 34 \beta_{5} + 27 \beta_{4} + 2 \beta_{3} - 26 \beta_{2} + 17 \beta _1 - 25 \)
|
\(\nu^{15}\) | \(=\) |
\( 50 \beta_{15} + 45 \beta_{14} - 20 \beta_{13} - 20 \beta_{12} + 48 \beta_{11} + 25 \beta_{10} + 6 \beta_{9} + 12 \beta_{8} + 20 \beta_{7} + 49 \beta_{6} + 38 \beta_{5} - 60 \beta_{4} - 56 \beta_{3} - 11 \beta_{2} - 79 \beta _1 + 8 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1 - \beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 |
|
−1.40985 | + | 0.111062i | −1.71646 | − | 0.231865i | 1.97533 | − | 0.313160i | 1.74322 | + | 3.01934i | 2.44570 | + | 0.136260i | 1.80802 | + | 1.04386i | −2.75013 | + | 0.660890i | 2.89248 | + | 0.795973i | −2.79300 | − | 4.06320i | ||||||||||||||||||||||||||||||||||||||||||||||||
11.2 | −1.12063 | + | 0.862658i | 0.418594 | − | 1.68071i | 0.511643 | − | 1.93345i | −1.60936 | − | 2.78750i | 0.980785 | + | 2.24456i | 1.82223 | + | 1.05206i | 1.09454 | + | 2.60806i | −2.64956 | − | 1.40707i | 4.20817 | + | 1.73544i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.3 | −0.867527 | + | 1.11687i | 0.925606 | + | 1.46399i | −0.494795 | − | 1.93783i | 0.895377 | + | 1.55084i | −2.43807 | − | 0.236266i | −2.08793 | − | 1.20546i | 2.59355 | + | 1.12850i | −1.28651 | + | 2.71015i | −2.50885 | − | 0.345375i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.4 | −0.608741 | − | 1.27649i | −1.71646 | − | 0.231865i | −1.25887 | + | 1.55411i | −1.74322 | − | 3.01934i | 0.748906 | + | 2.33220i | −1.80802 | − | 1.04386i | 2.75013 | + | 0.660890i | 2.89248 | + | 0.795973i | −2.79300 | + | 4.06320i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.5 | 0.186766 | − | 1.40183i | 0.418594 | − | 1.68071i | −1.93024 | − | 0.523628i | 1.60936 | + | 2.78750i | −2.27788 | − | 0.900696i | −1.82223 | − | 1.05206i | −1.09454 | + | 2.60806i | −2.64956 | − | 1.40707i | 4.20817 | − | 1.73544i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.6 | 0.409484 | + | 1.35363i | −1.12774 | + | 1.31461i | −1.66465 | + | 1.10858i | −0.565188 | − | 0.978934i | −2.24129 | − | 0.988231i | 3.71499 | + | 2.14485i | −2.18226 | − | 1.79937i | −0.456412 | − | 2.96508i | 1.09368 | − | 1.16591i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.7 | 0.533474 | − | 1.30973i | 0.925606 | + | 1.46399i | −1.43081 | − | 1.39742i | −0.895377 | − | 1.55084i | 2.41122 | − | 0.431300i | 2.08793 | + | 1.20546i | −2.59355 | + | 1.12850i | −1.28651 | + | 2.71015i | −2.50885 | + | 0.345375i | |||||||||||||||||||||||||||||||||||||||||||||||||
11.8 | 1.37702 | − | 0.322193i | −1.12774 | + | 1.31461i | 1.79238 | − | 0.887333i | 0.565188 | + | 0.978934i | −1.12936 | + | 2.17360i | −3.71499 | − | 2.14485i | 2.18226 | − | 1.79937i | −0.456412 | − | 2.96508i | 1.09368 | + | 1.16591i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.1 | −1.40985 | − | 0.111062i | −1.71646 | + | 0.231865i | 1.97533 | + | 0.313160i | 1.74322 | − | 3.01934i | 2.44570 | − | 0.136260i | 1.80802 | − | 1.04386i | −2.75013 | − | 0.660890i | 2.89248 | − | 0.795973i | −2.79300 | + | 4.06320i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.2 | −1.12063 | − | 0.862658i | 0.418594 | + | 1.68071i | 0.511643 | + | 1.93345i | −1.60936 | + | 2.78750i | 0.980785 | − | 2.24456i | 1.82223 | − | 1.05206i | 1.09454 | − | 2.60806i | −2.64956 | + | 1.40707i | 4.20817 | − | 1.73544i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.3 | −0.867527 | − | 1.11687i | 0.925606 | − | 1.46399i | −0.494795 | + | 1.93783i | 0.895377 | − | 1.55084i | −2.43807 | + | 0.236266i | −2.08793 | + | 1.20546i | 2.59355 | − | 1.12850i | −1.28651 | − | 2.71015i | −2.50885 | + | 0.345375i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.4 | −0.608741 | + | 1.27649i | −1.71646 | + | 0.231865i | −1.25887 | − | 1.55411i | −1.74322 | + | 3.01934i | 0.748906 | − | 2.33220i | −1.80802 | + | 1.04386i | 2.75013 | − | 0.660890i | 2.89248 | − | 0.795973i | −2.79300 | − | 4.06320i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.5 | 0.186766 | + | 1.40183i | 0.418594 | + | 1.68071i | −1.93024 | + | 0.523628i | 1.60936 | − | 2.78750i | −2.27788 | + | 0.900696i | −1.82223 | + | 1.05206i | −1.09454 | − | 2.60806i | −2.64956 | + | 1.40707i | 4.20817 | + | 1.73544i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.6 | 0.409484 | − | 1.35363i | −1.12774 | − | 1.31461i | −1.66465 | − | 1.10858i | −0.565188 | + | 0.978934i | −2.24129 | + | 0.988231i | 3.71499 | − | 2.14485i | −2.18226 | + | 1.79937i | −0.456412 | + | 2.96508i | 1.09368 | + | 1.16591i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.7 | 0.533474 | + | 1.30973i | 0.925606 | − | 1.46399i | −1.43081 | + | 1.39742i | −0.895377 | + | 1.55084i | 2.41122 | + | 0.431300i | 2.08793 | − | 1.20546i | −2.59355 | − | 1.12850i | −1.28651 | − | 2.71015i | −2.50885 | − | 0.345375i | |||||||||||||||||||||||||||||||||||||||||||||||||
59.8 | 1.37702 | + | 0.322193i | −1.12774 | − | 1.31461i | 1.79238 | + | 0.887333i | 0.565188 | − | 0.978934i | −1.12936 | − | 2.17360i | −3.71499 | + | 2.14485i | 2.18226 | + | 1.79937i | −0.456412 | + | 2.96508i | 1.09368 | − | 1.16591i | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
9.d | odd | 6 | 1 | inner |
72.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.2.l.b | ✓ | 16 |
3.b | odd | 2 | 1 | 216.2.l.b | 16 | ||
4.b | odd | 2 | 1 | 288.2.p.b | 16 | ||
8.b | even | 2 | 1 | 288.2.p.b | 16 | ||
8.d | odd | 2 | 1 | inner | 72.2.l.b | ✓ | 16 |
9.c | even | 3 | 1 | 216.2.l.b | 16 | ||
9.c | even | 3 | 1 | 648.2.f.b | 16 | ||
9.d | odd | 6 | 1 | inner | 72.2.l.b | ✓ | 16 |
9.d | odd | 6 | 1 | 648.2.f.b | 16 | ||
12.b | even | 2 | 1 | 864.2.p.b | 16 | ||
24.f | even | 2 | 1 | 216.2.l.b | 16 | ||
24.h | odd | 2 | 1 | 864.2.p.b | 16 | ||
36.f | odd | 6 | 1 | 864.2.p.b | 16 | ||
36.f | odd | 6 | 1 | 2592.2.f.b | 16 | ||
36.h | even | 6 | 1 | 288.2.p.b | 16 | ||
36.h | even | 6 | 1 | 2592.2.f.b | 16 | ||
72.j | odd | 6 | 1 | 288.2.p.b | 16 | ||
72.j | odd | 6 | 1 | 2592.2.f.b | 16 | ||
72.l | even | 6 | 1 | inner | 72.2.l.b | ✓ | 16 |
72.l | even | 6 | 1 | 648.2.f.b | 16 | ||
72.n | even | 6 | 1 | 864.2.p.b | 16 | ||
72.n | even | 6 | 1 | 2592.2.f.b | 16 | ||
72.p | odd | 6 | 1 | 216.2.l.b | 16 | ||
72.p | odd | 6 | 1 | 648.2.f.b | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.2.l.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
72.2.l.b | ✓ | 16 | 8.d | odd | 2 | 1 | inner |
72.2.l.b | ✓ | 16 | 9.d | odd | 6 | 1 | inner |
72.2.l.b | ✓ | 16 | 72.l | even | 6 | 1 | inner |
216.2.l.b | 16 | 3.b | odd | 2 | 1 | ||
216.2.l.b | 16 | 9.c | even | 3 | 1 | ||
216.2.l.b | 16 | 24.f | even | 2 | 1 | ||
216.2.l.b | 16 | 72.p | odd | 6 | 1 | ||
288.2.p.b | 16 | 4.b | odd | 2 | 1 | ||
288.2.p.b | 16 | 8.b | even | 2 | 1 | ||
288.2.p.b | 16 | 36.h | even | 6 | 1 | ||
288.2.p.b | 16 | 72.j | odd | 6 | 1 | ||
648.2.f.b | 16 | 9.c | even | 3 | 1 | ||
648.2.f.b | 16 | 9.d | odd | 6 | 1 | ||
648.2.f.b | 16 | 72.l | even | 6 | 1 | ||
648.2.f.b | 16 | 72.p | odd | 6 | 1 | ||
864.2.p.b | 16 | 12.b | even | 2 | 1 | ||
864.2.p.b | 16 | 24.h | odd | 2 | 1 | ||
864.2.p.b | 16 | 36.f | odd | 6 | 1 | ||
864.2.p.b | 16 | 72.n | even | 6 | 1 | ||
2592.2.f.b | 16 | 36.f | odd | 6 | 1 | ||
2592.2.f.b | 16 | 36.h | even | 6 | 1 | ||
2592.2.f.b | 16 | 72.j | odd | 6 | 1 | ||
2592.2.f.b | 16 | 72.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{16} + 27 T_{5}^{14} + 498 T_{5}^{12} + 4923 T_{5}^{10} + 35106 T_{5}^{8} + 123903 T_{5}^{6} + 312453 T_{5}^{4} + 339012 T_{5}^{2} + 266256 \)
acting on \(S_{2}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} + 3 T^{15} + 7 T^{14} + 12 T^{13} + \cdots + 256 \)
$3$
\( (T^{8} + 3 T^{7} + 6 T^{6} + 15 T^{5} + \cdots + 81)^{2} \)
$5$
\( T^{16} + 27 T^{14} + 498 T^{12} + \cdots + 266256 \)
$7$
\( T^{16} - 33 T^{14} + 750 T^{12} + \cdots + 4260096 \)
$11$
\( (T^{8} - 6 T^{7} + 8 T^{6} + 24 T^{5} - 9 T^{4} + \cdots + 1)^{2} \)
$13$
\( T^{16} - 57 T^{14} + 2442 T^{12} + \cdots + 266256 \)
$17$
\( (T^{8} + 35 T^{6} + 360 T^{4} + 992 T^{2} + \cdots + 784)^{2} \)
$19$
\( (T^{4} + T^{3} - 12 T^{2} - 8 T + 16)^{4} \)
$23$
\( T^{16} + 99 T^{14} + \cdots + 639280656 \)
$29$
\( T^{16} + 135 T^{14} + \cdots + 17449353216 \)
$31$
\( T^{16} - 117 T^{14} + \cdots + 279189651456 \)
$37$
\( (T^{8} + 156 T^{6} + 4896 T^{4} + \cdots + 74304)^{2} \)
$41$
\( (T^{8} + 18 T^{7} + 128 T^{6} + 360 T^{5} + \cdots + 7921)^{2} \)
$43$
\( (T^{8} - 4 T^{7} + 76 T^{6} + 524 T^{5} + \cdots + 6889)^{2} \)
$47$
\( T^{16} + 111 T^{14} + 10818 T^{12} + \cdots + 266256 \)
$53$
\( (T^{8} - 228 T^{6} + 15408 T^{4} + \cdots + 297216)^{2} \)
$59$
\( (T^{8} - 6 T^{7} - 58 T^{6} + 420 T^{5} + \cdots + 528529)^{2} \)
$61$
\( T^{16} - 189 T^{14} + \cdots + 1192149524736 \)
$67$
\( (T^{8} + 8 T^{7} + 130 T^{6} + \cdots + 582169)^{2} \)
$71$
\( (T^{8} - 168 T^{6} + 3744 T^{4} + \cdots + 74304)^{2} \)
$73$
\( (T^{4} + T^{3} - 78 T^{2} - 224 T + 172)^{4} \)
$79$
\( T^{16} - 249 T^{14} + \cdots + 74509345296 \)
$83$
\( (T^{8} - 27 T^{7} + 212 T^{6} + \cdots + 432964)^{2} \)
$89$
\( (T^{8} + 272 T^{6} + 23808 T^{4} + \cdots + 891136)^{2} \)
$97$
\( (T^{8} - 4 T^{7} + 190 T^{6} + \cdots + 1018081)^{2} \)
show more
show less