Properties

Label 72.2.l.a.59.2
Level $72$
Weight $2$
Character 72.59
Analytic conductor $0.575$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,2,Mod(11,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 72.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 59.2
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 72.59
Dual form 72.2.l.a.11.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(-0.724745 + 1.57313i) q^{3} +(1.00000 - 1.73205i) q^{4} +(0.224745 + 2.43916i) q^{6} -2.82843i q^{8} +(-1.94949 - 2.28024i) q^{9} +(-5.72474 + 3.30518i) q^{11} +(2.00000 + 2.82843i) q^{12} +(-2.00000 - 3.46410i) q^{16} -2.36773i q^{17} +(-4.00000 - 1.41421i) q^{18} +6.34847 q^{19} +(-4.67423 + 8.09601i) q^{22} +(4.44949 + 2.04989i) q^{24} +(2.50000 + 4.33013i) q^{25} +(5.00000 - 1.41421i) q^{27} +(-4.89898 - 2.82843i) q^{32} +(-1.05051 - 11.4012i) q^{33} +(-1.67423 - 2.89986i) q^{34} +(-5.89898 + 1.09638i) q^{36} +(7.77526 - 4.48905i) q^{38} +(9.39898 + 5.42650i) q^{41} +(-6.17423 - 10.6941i) q^{43} +13.2207i q^{44} +(6.89898 - 0.635674i) q^{48} +(-3.50000 + 6.06218i) q^{49} +(6.12372 + 3.53553i) q^{50} +(3.72474 + 1.71600i) q^{51} +(5.12372 - 5.26758i) q^{54} +(-4.60102 + 9.98698i) q^{57} +(-1.62372 - 0.937458i) q^{59} -8.00000 q^{64} +(-9.34847 - 13.2207i) q^{66} +(-0.174235 + 0.301783i) q^{67} +(-4.10102 - 2.36773i) q^{68} +(-6.44949 + 5.51399i) q^{72} -15.6969 q^{73} +(-8.62372 + 0.794593i) q^{75} +(6.34847 - 10.9959i) q^{76} +(-1.39898 + 8.89060i) q^{81} +15.3485 q^{82} +(2.44949 - 1.41421i) q^{83} +(-15.1237 - 8.73169i) q^{86} +(9.34847 + 16.1920i) q^{88} -5.65685i q^{89} +(8.00000 - 5.65685i) q^{96} +(4.84847 + 8.39780i) q^{97} +9.89949i q^{98} +(18.6969 + 6.61037i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{4} - 4 q^{6} + 2 q^{9} - 18 q^{11} + 8 q^{12} - 8 q^{16} - 16 q^{18} - 4 q^{19} - 4 q^{22} + 8 q^{24} + 10 q^{25} + 20 q^{27} - 14 q^{33} + 8 q^{34} - 4 q^{36} + 36 q^{38} + 18 q^{41}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.866025 0.500000i
\(3\) −0.724745 + 1.57313i −0.418432 + 0.908248i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0.224745 + 2.43916i 0.0917517 + 0.995782i
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) 2.82843i 1.00000i
\(9\) −1.94949 2.28024i −0.649830 0.760080i
\(10\) 0 0
\(11\) −5.72474 + 3.30518i −1.72608 + 0.996550i −0.821541 + 0.570149i \(0.806886\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 2.00000 + 2.82843i 0.577350 + 0.816497i
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 2.36773i 0.574258i −0.957892 0.287129i \(-0.907299\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) −4.00000 1.41421i −0.942809 0.333333i
\(19\) 6.34847 1.45644 0.728219 0.685344i \(-0.240348\pi\)
0.728219 + 0.685344i \(0.240348\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.67423 + 8.09601i −0.996550 + 1.72608i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 4.44949 + 2.04989i 0.908248 + 0.418432i
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) 5.00000 1.41421i 0.962250 0.272166i
\(28\) 0 0
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) −4.89898 2.82843i −0.866025 0.500000i
\(33\) −1.05051 11.4012i −0.182870 1.98469i
\(34\) −1.67423 2.89986i −0.287129 0.497322i
\(35\) 0 0
\(36\) −5.89898 + 1.09638i −0.983163 + 0.182729i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 7.77526 4.48905i 1.26131 0.728219i
\(39\) 0 0
\(40\) 0 0
\(41\) 9.39898 + 5.42650i 1.46787 + 0.847477i 0.999353 0.0359748i \(-0.0114536\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −6.17423 10.6941i −0.941562 1.63083i −0.762493 0.646997i \(-0.776025\pi\)
−0.179069 0.983836i \(-0.557309\pi\)
\(44\) 13.2207i 1.99310i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 6.89898 0.635674i 0.995782 0.0917517i
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) 6.12372 + 3.53553i 0.866025 + 0.500000i
\(51\) 3.72474 + 1.71600i 0.521569 + 0.240288i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 5.12372 5.26758i 0.697251 0.716827i
\(55\) 0 0
\(56\) 0 0
\(57\) −4.60102 + 9.98698i −0.609420 + 1.32281i
\(58\) 0 0
\(59\) −1.62372 0.937458i −0.211391 0.122047i 0.390567 0.920575i \(-0.372279\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) −9.34847 13.2207i −1.15072 1.62736i
\(67\) −0.174235 + 0.301783i −0.0212861 + 0.0368687i −0.876472 0.481452i \(-0.840109\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) −4.10102 2.36773i −0.497322 0.287129i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −6.44949 + 5.51399i −0.760080 + 0.649830i
\(73\) −15.6969 −1.83719 −0.918594 0.395203i \(-0.870674\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 0 0
\(75\) −8.62372 + 0.794593i −0.995782 + 0.0917517i
\(76\) 6.34847 10.9959i 0.728219 1.26131i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0 0
\(81\) −1.39898 + 8.89060i −0.155442 + 0.987845i
\(82\) 15.3485 1.69495
\(83\) 2.44949 1.41421i 0.268866 0.155230i −0.359506 0.933143i \(-0.617055\pi\)
0.628372 + 0.777913i \(0.283721\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −15.1237 8.73169i −1.63083 0.941562i
\(87\) 0 0
\(88\) 9.34847 + 16.1920i 0.996550 + 1.72608i
\(89\) 5.65685i 0.599625i −0.953998 0.299813i \(-0.903076\pi\)
0.953998 0.299813i \(-0.0969242\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 8.00000 5.65685i 0.816497 0.577350i
\(97\) 4.84847 + 8.39780i 0.492287 + 0.852667i 0.999961 0.00888289i \(-0.00282755\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 18.6969 + 6.61037i 1.87911 + 0.664367i
\(100\) 10.0000 1.00000
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 5.77526 0.532134i 0.571835 0.0526891i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.0956i 1.45935i −0.683793 0.729676i \(-0.739671\pi\)
0.683793 0.729676i \(-0.260329\pi\)
\(108\) 2.55051 10.0745i 0.245423 0.969416i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.79796 5.65685i −0.921714 0.532152i −0.0375328 0.999295i \(-0.511950\pi\)
−0.884182 + 0.467143i \(0.845283\pi\)
\(114\) 1.42679 + 15.4849i 0.133631 + 1.45030i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −2.65153 −0.244093
\(119\) 0 0
\(120\) 0 0
\(121\) 16.3485 28.3164i 1.48622 2.57422i
\(122\) 0 0
\(123\) −15.3485 + 10.8530i −1.38392 + 0.978583i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −9.79796 + 5.65685i −0.866025 + 0.500000i
\(129\) 21.2980 1.96240i 1.87518 0.172780i
\(130\) 0 0
\(131\) 12.2474 + 7.07107i 1.07006 + 0.617802i 0.928199 0.372084i \(-0.121357\pi\)
0.141865 + 0.989886i \(0.454690\pi\)
\(132\) −20.7980 9.58166i −1.81023 0.833976i
\(133\) 0 0
\(134\) 0.492810i 0.0425723i
\(135\) 0 0
\(136\) −6.69694 −0.574258
\(137\) 5.29796 3.05878i 0.452635 0.261329i −0.256307 0.966595i \(-0.582506\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) 0 0
\(139\) −9.17423 + 15.8902i −0.778148 + 1.34779i 0.154859 + 0.987937i \(0.450508\pi\)
−0.933008 + 0.359856i \(0.882826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −4.00000 + 11.3137i −0.333333 + 0.942809i
\(145\) 0 0
\(146\) −19.2247 + 11.0994i −1.59105 + 0.918594i
\(147\) −7.00000 9.89949i −0.577350 0.816497i
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) −10.0000 + 7.07107i −0.816497 + 0.577350i
\(151\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 17.9562i 1.45644i
\(153\) −5.39898 + 4.61586i −0.436482 + 0.373170i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 4.57321 + 11.8780i 0.359306 + 0.933220i
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 18.7980 10.8530i 1.46787 0.847477i
\(165\) 0 0
\(166\) 2.00000 3.46410i 0.155230 0.268866i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) −6.50000 11.2583i −0.500000 0.866025i
\(170\) 0 0
\(171\) −12.3763 14.4760i −0.946437 1.10701i
\(172\) −24.6969 −1.88312
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 22.8990 + 13.2207i 1.72608 + 0.996550i
\(177\) 2.65153 1.87492i 0.199301 0.140927i
\(178\) −4.00000 6.92820i −0.299813 0.519291i
\(179\) 19.7990i 1.47985i 0.672692 + 0.739923i \(0.265138\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.82577 + 13.5546i 0.572277 + 0.991212i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 5.79796 12.5851i 0.418432 0.908248i
\(193\) 1.84847 3.20164i 0.133056 0.230459i −0.791797 0.610784i \(-0.790854\pi\)
0.924853 + 0.380325i \(0.124188\pi\)
\(194\) 11.8763 + 6.85677i 0.852667 + 0.492287i
\(195\) 0 0
\(196\) 7.00000 + 12.1244i 0.500000 + 0.866025i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 27.5732 5.12472i 1.95954 0.364198i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 12.2474 7.07107i 0.866025 0.500000i
\(201\) −0.348469 0.492810i −0.0245791 0.0347601i
\(202\) 0 0
\(203\) 0 0
\(204\) 6.69694 4.73545i 0.468879 0.331548i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −36.3434 + 20.9829i −2.51392 + 1.45141i
\(210\) 0 0
\(211\) −7.00000 + 12.1244i −0.481900 + 0.834675i −0.999784 0.0207756i \(-0.993386\pi\)
0.517884 + 0.855451i \(0.326720\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −10.6742 18.4883i −0.729676 1.26384i
\(215\) 0 0
\(216\) −4.00000 14.1421i −0.272166 0.962250i
\(217\) 0 0
\(218\) 0 0
\(219\) 11.3763 24.6934i 0.768737 1.66862i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 0 0
\(225\) 5.00000 14.1421i 0.333333 0.942809i
\(226\) −16.0000 −1.06430
\(227\) 21.2753 12.2833i 1.41209 0.815270i 0.416503 0.909134i \(-0.363255\pi\)
0.995585 + 0.0938647i \(0.0299221\pi\)
\(228\) 12.6969 + 17.9562i 0.840875 + 1.18918i
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.8092i 1.88735i 0.330870 + 0.943676i \(0.392658\pi\)
−0.330870 + 0.943676i \(0.607342\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3.24745 + 1.87492i −0.211391 + 0.122047i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) 13.8485 + 23.9863i 0.892058 + 1.54509i 0.837404 + 0.546585i \(0.184072\pi\)
0.0546547 + 0.998505i \(0.482594\pi\)
\(242\) 46.2405i 2.97245i
\(243\) −12.9722 8.64420i −0.832167 0.554526i
\(244\) 0 0
\(245\) 0 0
\(246\) −11.1237 + 24.1452i −0.709223 + 1.53944i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.449490 + 4.87832i 0.0284853 + 0.309151i
\(250\) 0 0
\(251\) 10.3602i 0.653930i 0.945036 + 0.326965i \(0.106026\pi\)
−0.945036 + 0.326965i \(0.893974\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −17.6010 10.1620i −1.09792 0.633885i −0.162247 0.986750i \(-0.551874\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 24.6969 17.4634i 1.53756 1.08722i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) −32.2474 + 2.97129i −1.98469 + 0.182870i
\(265\) 0 0
\(266\) 0 0
\(267\) 8.89898 + 4.09978i 0.544609 + 0.250902i
\(268\) 0.348469 + 0.603566i 0.0212861 + 0.0368687i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −8.20204 + 4.73545i −0.497322 + 0.287129i
\(273\) 0 0
\(274\) 4.32577 7.49245i 0.261329 0.452635i
\(275\) −28.6237 16.5259i −1.72608 0.996550i
\(276\) 0 0
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 25.9487i 1.55630i
\(279\) 0 0
\(280\) 0 0
\(281\) 24.4949 14.1421i 1.46124 0.843649i 0.462174 0.886789i \(-0.347070\pi\)
0.999069 + 0.0431402i \(0.0137362\pi\)
\(282\) 0 0
\(283\) 11.0000 19.0526i 0.653882 1.13256i −0.328291 0.944577i \(-0.606473\pi\)
0.982173 0.187980i \(-0.0601941\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 3.10102 + 16.6848i 0.182729 + 0.983163i
\(289\) 11.3939 0.670228
\(290\) 0 0
\(291\) −16.7247 + 1.54102i −0.980422 + 0.0903364i
\(292\) −15.6969 + 27.1879i −0.918594 + 1.59105i
\(293\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) −15.5732 7.17461i −0.908248 0.418432i
\(295\) 0 0
\(296\) 0 0
\(297\) −23.9495 + 24.6219i −1.38969 + 1.42871i
\(298\) 0 0
\(299\) 0 0
\(300\) −7.24745 + 15.7313i −0.418432 + 0.908248i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −12.6969 21.9917i −0.728219 1.26131i
\(305\) 0 0
\(306\) −3.34847 + 9.47090i −0.191419 + 0.541415i
\(307\) 24.3485 1.38964 0.694820 0.719183i \(-0.255484\pi\)
0.694820 + 0.719183i \(0.255484\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) −17.1969 29.7860i −0.972028 1.68360i −0.689412 0.724370i \(-0.742131\pi\)
−0.282617 0.959233i \(-0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 23.7474 + 10.9405i 1.32545 + 0.610639i
\(322\) 0 0
\(323\) 15.0314i 0.836371i
\(324\) 14.0000 + 11.3137i 0.777778 + 0.628539i
\(325\) 0 0
\(326\) 2.44949 1.41421i 0.135665 0.0783260i
\(327\) 0 0
\(328\) 15.3485 26.5843i 0.847477 1.46787i
\(329\) 0 0
\(330\) 0 0
\(331\) −13.0000 22.5167i −0.714545 1.23763i −0.963135 0.269019i \(-0.913301\pi\)
0.248590 0.968609i \(-0.420033\pi\)
\(332\) 5.65685i 0.310460i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −11.1969 + 19.3937i −0.609936 + 1.05644i 0.381314 + 0.924445i \(0.375472\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) −15.9217 9.19239i −0.866025 0.500000i
\(339\) 16.0000 11.3137i 0.869001 0.614476i
\(340\) 0 0
\(341\) 0 0
\(342\) −25.3939 8.97809i −1.37314 0.485480i
\(343\) 0 0
\(344\) −30.2474 + 17.4634i −1.63083 + 0.941562i
\(345\) 0 0
\(346\) 0 0
\(347\) 20.4217 + 11.7905i 1.09629 + 0.632945i 0.935245 0.354001i \(-0.115179\pi\)
0.161048 + 0.986947i \(0.448512\pi\)
\(348\) 0 0
\(349\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 37.3939 1.99310
\(353\) 32.2980 18.6472i 1.71905 0.992492i 0.798369 0.602168i \(-0.205696\pi\)
0.920677 0.390324i \(-0.127637\pi\)
\(354\) 1.92168 4.17121i 0.102136 0.221697i
\(355\) 0 0
\(356\) −9.79796 5.65685i −0.519291 0.299813i
\(357\) 0 0
\(358\) 14.0000 + 24.2487i 0.739923 + 1.28158i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.3031 1.12121
\(362\) 0 0
\(363\) 32.6969 + 46.2405i 1.71614 + 2.42699i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) −5.94949 32.0108i −0.309718 1.66642i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 19.1691 + 11.0673i 0.991212 + 0.572277i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −11.6515 −0.598499 −0.299249 0.954175i \(-0.596736\pi\)
−0.299249 + 0.954175i \(0.596736\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) −1.79796 19.5133i −0.0917517 0.995782i
\(385\) 0 0
\(386\) 5.22826i 0.266111i
\(387\) −12.3485 + 34.9267i −0.627708 + 1.77543i
\(388\) 19.3939 0.984575
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 17.1464 + 9.89949i 0.866025 + 0.500000i
\(393\) −20.0000 + 14.1421i −1.00887 + 0.713376i
\(394\) 0 0
\(395\) 0 0
\(396\) 30.1464 25.7737i 1.51492 1.29518i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 10.0000 17.3205i 0.500000 0.866025i
\(401\) −12.6464 7.30142i −0.631532 0.364615i 0.149813 0.988714i \(-0.452133\pi\)
−0.781345 + 0.624099i \(0.785466\pi\)
\(402\) −0.775255 0.357161i −0.0386662 0.0178136i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 4.85357 10.5352i 0.240288 0.521569i
\(409\) −20.1969 + 34.9821i −0.998674 + 1.72975i −0.454759 + 0.890614i \(0.650275\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 0.972194 + 10.5512i 0.0479548 + 0.520453i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −18.3485 25.9487i −0.898528 1.27071i
\(418\) −29.6742 + 51.3973i −1.45141 + 2.51392i
\(419\) −31.8434 18.3848i −1.55565 0.898155i −0.997665 0.0683046i \(-0.978241\pi\)
−0.557986 0.829851i \(-0.688426\pi\)
\(420\) 0 0
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) 19.7990i 0.963800i
\(423\) 0 0
\(424\) 0 0
\(425\) 10.2526 5.91931i 0.497322 0.287129i
\(426\) 0 0
\(427\) 0 0
\(428\) −26.1464 15.0956i −1.26384 0.729676i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −14.8990 14.4921i −0.716827 0.697251i
\(433\) −33.6969 −1.61937 −0.809686 0.586864i \(-0.800362\pi\)
−0.809686 + 0.586864i \(0.800362\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −3.52781 38.2873i −0.168565 1.82944i
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 20.6464 3.83732i 0.983163 0.182729i
\(442\) 0 0
\(443\) −32.7247 + 18.8936i −1.55480 + 0.897664i −0.557059 + 0.830473i \(0.688070\pi\)
−0.997740 + 0.0671913i \(0.978596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.5446i 1.58307i −0.611124 0.791535i \(-0.709282\pi\)
0.611124 0.791535i \(-0.290718\pi\)
\(450\) −3.87628 20.8560i −0.182729 0.983163i
\(451\) −71.7423 −3.37822
\(452\) −19.5959 + 11.3137i −0.921714 + 0.532152i
\(453\) 0 0
\(454\) 17.3712 30.0878i 0.815270 1.41209i
\(455\) 0 0
\(456\) 28.2474 + 13.0137i 1.32281 + 0.609420i
\(457\) −8.19694 14.1975i −0.383437 0.664132i 0.608114 0.793849i \(-0.291926\pi\)
−0.991551 + 0.129718i \(0.958593\pi\)
\(458\) 0 0
\(459\) −3.34847 11.8386i −0.156293 0.552580i
\(460\) 0 0
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 20.3712 + 35.2839i 0.943676 + 1.63450i
\(467\) 41.5371i 1.92211i 0.276360 + 0.961054i \(0.410872\pi\)
−0.276360 + 0.961054i \(0.589128\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −2.65153 + 4.59259i −0.122047 + 0.211391i
\(473\) 70.6918 + 40.8140i 3.25041 + 1.87663i
\(474\) 0 0
\(475\) 15.8712 + 27.4897i 0.728219 + 1.26131i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 33.9217 + 19.5847i 1.54509 + 0.892058i
\(483\) 0 0
\(484\) −32.6969 56.6328i −1.48622 2.57422i
\(485\) 0 0
\(486\) −22.0000 1.41421i −0.997940 0.0641500i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −1.44949 + 3.14626i −0.0655482 + 0.142279i
\(490\) 0 0
\(491\) 25.3763 + 14.6510i 1.14522 + 0.661190i 0.947717 0.319113i \(-0.103385\pi\)
0.197499 + 0.980303i \(0.436718\pi\)
\(492\) 3.44949 + 37.4373i 0.155515 + 1.68781i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 4.00000 + 5.65685i 0.179244 + 0.253490i
\(499\) 21.8712 37.8820i 0.979088 1.69583i 0.313363 0.949633i \(-0.398544\pi\)
0.665725 0.746197i \(-0.268122\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 7.32577 + 12.6886i 0.326965 + 0.566320i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 22.4217 2.06594i 0.995782 0.0917517i
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 31.7423 8.97809i 1.40146 0.396392i
\(514\) −28.7423 −1.26777
\(515\) 0 0
\(516\) 17.8990 38.8515i 0.787959 1.71034i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 27.8236i 1.21897i −0.792797 0.609486i \(-0.791376\pi\)
0.792797 0.609486i \(-0.208624\pi\)
\(522\) 0 0
\(523\) 38.0000 1.66162 0.830812 0.556553i \(-0.187876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) 24.4949 14.1421i 1.07006 0.617802i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −37.3939 + 26.4415i −1.62736 + 1.15072i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 1.02781 + 5.53004i 0.0446030 + 0.239983i
\(532\) 0 0
\(533\) 0 0
\(534\) 13.7980 1.27135i 0.597096 0.0550167i
\(535\) 0 0
\(536\) 0.853572 + 0.492810i 0.0368687 + 0.0212861i
\(537\) −31.1464 14.3492i −1.34407 0.619214i
\(538\) 0 0
\(539\) 46.2726i 1.99310i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −6.69694 + 11.5994i −0.287129 + 0.497322i
\(545\) 0 0
\(546\) 0 0
\(547\) −15.1742 26.2825i −0.648803 1.12376i −0.983409 0.181402i \(-0.941936\pi\)
0.334606 0.942358i \(-0.391397\pi\)
\(548\) 12.2351i 0.522658i
\(549\) 0 0
\(550\) −46.7423 −1.99310
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 18.3485 + 31.7805i 0.778148 + 1.34779i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −26.9949 + 2.48732i −1.13973 + 0.105015i
\(562\) 20.0000 34.6410i 0.843649 1.46124i
\(563\) −6.57832 3.79799i −0.277243 0.160066i 0.354932 0.934892i \(-0.384504\pi\)
−0.632175 + 0.774826i \(0.717837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 31.1127i 1.30776i
\(567\) 0 0
\(568\) 0 0
\(569\) −21.7020 + 12.5297i −0.909797 + 0.525271i −0.880366 0.474295i \(-0.842703\pi\)
−0.0294311 + 0.999567i \(0.509370\pi\)
\(570\) 0 0
\(571\) 12.8712 22.2935i 0.538642 0.932955i −0.460336 0.887745i \(-0.652271\pi\)
0.998978 0.0452101i \(-0.0143957\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 15.5959 + 18.2419i 0.649830 + 0.760080i
\(577\) 46.3939 1.93140 0.965701 0.259656i \(-0.0836092\pi\)
0.965701 + 0.259656i \(0.0836092\pi\)
\(578\) 13.9546 8.05669i 0.580435 0.335114i
\(579\) 3.69694 + 5.22826i 0.153640 + 0.217279i
\(580\) 0 0
\(581\) 0 0
\(582\) −19.3939 + 13.7135i −0.803902 + 0.568445i
\(583\) 0 0
\(584\) 44.3976i 1.83719i
\(585\) 0 0
\(586\) 0 0
\(587\) 16.3207 9.42274i 0.673626 0.388918i −0.123823 0.992304i \(-0.539516\pi\)
0.797449 + 0.603386i \(0.206182\pi\)
\(588\) −24.1464 + 2.22486i −0.995782 + 0.0917517i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.2548i 1.85839i 0.369586 + 0.929197i \(0.379500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) −11.9217 + 47.0904i −0.489153 + 1.93214i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 2.24745 + 24.3916i 0.0917517 + 0.995782i
\(601\) −4.15153 7.19066i −0.169344 0.293313i 0.768845 0.639435i \(-0.220832\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) 0 0
\(603\) 1.02781 0.191027i 0.0418555 0.00777921i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) −31.1010 17.9562i −1.26131 0.728219i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 2.59592 + 13.9672i 0.104934 + 0.564589i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 29.8207 17.2170i 1.20346 0.694820i
\(615\) 0 0
\(616\) 0 0
\(617\) −39.6464 22.8899i −1.59611 0.921512i −0.992228 0.124434i \(-0.960288\pi\)
−0.603877 0.797077i \(-0.706378\pi\)
\(618\) 0 0
\(619\) 24.8712 + 43.0781i 0.999657 + 1.73146i 0.522514 + 0.852631i \(0.324994\pi\)
0.477143 + 0.878826i \(0.341672\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) −42.1237 24.3201i −1.68360 0.972028i
\(627\) −6.66913 72.3801i −0.266339 2.89058i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −14.0000 19.7990i −0.556450 0.786939i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −43.7474 + 25.2576i −1.72792 + 0.997615i −0.829450 + 0.558581i \(0.811346\pi\)
−0.898470 + 0.439034i \(0.855321\pi\)
\(642\) 36.8207 3.39267i 1.45320 0.133898i
\(643\) 8.82577 15.2867i 0.348054 0.602848i −0.637850 0.770161i \(-0.720176\pi\)
0.985904 + 0.167313i \(0.0535092\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −10.6288 18.4097i −0.418186 0.724319i
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 25.1464 + 3.95691i 0.987845 + 0.155442i
\(649\) 12.3939 0.486502
\(650\) 0 0
\(651\) 0 0
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 43.4120i 1.69495i
\(657\) 30.6010 + 35.7928i 1.19386 + 1.39641i
\(658\) 0 0
\(659\) −41.6413 + 24.0416i −1.62212 + 0.936529i −0.635763 + 0.771885i \(0.719314\pi\)
−0.986353 + 0.164644i \(0.947352\pi\)
\(660\) 0 0
\(661\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) −31.8434 18.3848i −1.23763 0.714545i
\(663\) 0 0
\(664\) −4.00000 6.92820i −0.155230 0.268866i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 5.00000 + 8.66025i 0.192736 + 0.333828i 0.946156 0.323711i \(-0.104931\pi\)
−0.753420 + 0.657539i \(0.771597\pi\)
\(674\) 31.6697i 1.21987i
\(675\) 18.6237 + 18.1151i 0.716827 + 0.697251i
\(676\) −26.0000 −1.00000
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 11.5959 25.1701i 0.445339 0.966652i
\(679\) 0 0
\(680\) 0 0
\(681\) 3.90408 + 42.3710i 0.149605 + 1.62366i
\(682\) 0 0
\(683\) 20.8167i 0.796530i −0.917270 0.398265i \(-0.869613\pi\)
0.917270 0.398265i \(-0.130387\pi\)
\(684\) −37.4495 + 6.96031i −1.43192 + 0.266134i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −24.6969 + 42.7764i −0.941562 + 1.63083i
\(689\) 0 0
\(690\) 0 0
\(691\) 23.0000 + 39.8372i 0.874961 + 1.51548i 0.856804 + 0.515642i \(0.172447\pi\)
0.0181572 + 0.999835i \(0.494220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 33.3485 1.26589
\(695\) 0 0
\(696\) 0 0
\(697\) 12.8485 22.2542i 0.486670 0.842938i
\(698\) 0 0
\(699\) −45.3207 20.8793i −1.71418 0.789728i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 45.7980 26.4415i 1.72608 0.996550i
\(705\) 0 0
\(706\) 26.3712 45.6762i 0.992492 1.71905i
\(707\) 0 0
\(708\) −0.595918 6.46750i −0.0223960 0.243064i
\(709\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −16.0000 −0.599625
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 34.2929 + 19.7990i 1.28158 + 0.739923i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 26.0908 15.0635i 0.971000 0.560607i
\(723\) −47.7702 + 4.40156i −1.77659 + 0.163696i
\(724\) 0 0
\(725\) 0 0
\(726\) 72.7423 + 33.5125i 2.69972 + 1.24377i
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 0 0
\(731\) −25.3207 + 14.6189i −0.936519 + 0.540699i
\(732\) 0 0
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.30351i 0.0848508i
\(738\) −29.9217 34.9982i −1.10143 1.28830i
\(739\) −19.7423 −0.726234 −0.363117 0.931744i \(-0.618287\pi\)
−0.363117 + 0.931744i \(0.618287\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.00000 2.82843i −0.292705 0.103487i
\(748\) 31.3031 1.14455
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) −16.2980 7.50850i −0.593931 0.273625i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −14.2702 + 8.23888i −0.518315 + 0.299249i
\(759\) 0 0
\(760\) 0 0
\(761\) −9.79796 5.65685i −0.355176 0.205061i 0.311787 0.950152i \(-0.399073\pi\)
−0.666962 + 0.745091i \(0.732406\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −16.0000 22.6274i −0.577350 0.816497i
\(769\) 11.0000 19.0526i 0.396670 0.687053i −0.596643 0.802507i \(-0.703499\pi\)
0.993313 + 0.115454i \(0.0368323\pi\)
\(770\) 0 0
\(771\) 28.7423 20.3239i 1.03513 0.731948i
\(772\) −3.69694 6.40329i −0.133056 0.230459i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 9.57321 + 51.5080i 0.344102 + 1.85142i
\(775\) 0 0
\(776\) 23.7526 13.7135i 0.852667 0.492287i
\(777\) 0 0
\(778\) 0 0
\(779\) 59.6691 + 34.4500i 2.13787 + 1.23430i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) −14.4949 + 31.4626i −0.517016 + 1.12224i
\(787\) −25.0000 + 43.3013i −0.891154 + 1.54352i −0.0526599 + 0.998613i \(0.516770\pi\)
−0.838494 + 0.544911i \(0.816563\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 18.6969 52.8829i 0.664367 1.87911i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 28.2843i 1.00000i
\(801\) −12.8990 + 11.0280i −0.455763 + 0.389654i
\(802\) −20.6515 −0.729231
\(803\) 89.8610 51.8813i 3.17112 1.83085i
\(804\) −1.20204 + 0.110756i −0.0423927 + 0.00390608i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.0881i 0.811735i 0.913932 + 0.405868i \(0.133031\pi\)
−0.913932 + 0.405868i \(0.866969\pi\)
\(810\) 0 0
\(811\) −55.7423 −1.95738 −0.978689 0.205347i \(-0.934168\pi\)
−0.978689 + 0.205347i \(0.934168\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −1.50510 16.3349i −0.0526891 0.571835i
\(817\) −39.1969 67.8911i −1.37133 2.37521i
\(818\) 57.1256i 1.99735i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(822\) 8.65153 + 12.2351i 0.301757 + 0.426749i
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 46.7423 33.0518i 1.62736 1.15072i
\(826\) 0 0
\(827\) 19.7990i 0.688478i 0.938882 + 0.344239i \(0.111863\pi\)
−0.938882 + 0.344239i \(0.888137\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.3536 + 8.28704i 0.497322 + 0.287129i
\(834\) −40.8207 18.8062i −1.41350 0.651204i
\(835\) 0 0
\(836\) 83.9314i 2.90283i
\(837\) 0 0
\(838\) −52.0000 −1.79631
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 0 0
\(843\) 4.49490 + 48.7832i 0.154812 + 1.68018i
\(844\) 14.0000 + 24.2487i 0.481900 + 0.834675i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22.0000 + 31.1127i 0.755038 + 1.06779i
\(850\) 8.37117 14.4993i 0.287129 0.497322i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −42.6969 −1.45935
\(857\) −19.5959 + 11.3137i −0.669384 + 0.386469i −0.795843 0.605503i \(-0.792972\pi\)
0.126459 + 0.991972i \(0.459639\pi\)
\(858\) 0 0
\(859\) −18.1742 + 31.4787i −0.620097 + 1.07404i 0.369370 + 0.929282i \(0.379573\pi\)
−0.989467 + 0.144757i \(0.953760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) −28.4949 7.21393i −0.969416 0.245423i
\(865\) 0 0
\(866\) −41.2702 + 23.8273i −1.40242 + 0.809686i
\(867\) −8.25765 + 17.9241i −0.280445 + 0.608733i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 9.69694 27.4271i 0.328192 0.928266i
\(874\) 0 0
\(875\) 0 0
\(876\) −31.3939 44.3976i −1.06070 1.50006i
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 56.5685i 1.90584i −0.303218 0.952921i \(-0.598061\pi\)
0.303218 0.952921i \(-0.401939\pi\)
\(882\) 22.5732 19.2990i 0.760080 0.649830i
\(883\) 50.4393 1.69742 0.848709 0.528861i \(-0.177381\pi\)
0.848709 + 0.528861i \(0.177381\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −26.7196 + 46.2798i −0.897664 + 1.55480i
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −21.3763 55.5203i −0.716132 1.86000i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −23.7196 41.0836i −0.791535 1.37098i
\(899\) 0 0
\(900\) −19.4949 22.8024i −0.649830 0.760080i
\(901\) 0 0
\(902\) −87.8661 + 50.7295i −2.92562 + 1.68911i
\(903\) 0 0
\(904\) −16.0000 + 27.7128i −0.532152 + 0.921714i
\(905\) 0 0
\(906\) 0 0
\(907\) −28.2196 48.8779i −0.937018 1.62296i −0.770996 0.636841i \(-0.780241\pi\)
−0.166022 0.986122i \(-0.553092\pi\)
\(908\) 49.1331i 1.63054i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 43.7980 4.03556i 1.45030 0.133631i
\(913\) −9.34847 + 16.1920i −0.309389 + 0.535878i
\(914\) −20.0783 11.5922i −0.664132 0.383437i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −12.4722 12.1316i −0.411644 0.400402i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −17.6464 + 38.3034i −0.581470 + 1.26214i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.4949 14.1421i 0.803652 0.463988i −0.0410949 0.999155i \(-0.513085\pi\)
0.844746 + 0.535167i \(0.179751\pi\)
\(930\) 0 0
\(931\) −22.2196 + 38.4855i −0.728219 + 1.26131i
\(932\) 49.8990 + 28.8092i 1.63450 + 0.943676i
\(933\) 0 0
\(934\) 29.3712 + 50.8724i 0.961054 + 1.66459i
\(935\) 0 0
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) 59.3207 5.46583i 1.93586 0.178371i
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 7.49966i 0.244093i
\(945\) 0 0
\(946\) 115.439 3.75325
\(947\) −0.770153 + 0.444648i −0.0250266 + 0.0144491i −0.512461 0.858710i \(-0.671266\pi\)
0.487435 + 0.873160i \(0.337933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 38.8763 + 22.4452i 1.26131 + 0.728219i
\(951\) 0 0
\(952\) 0 0
\(953\) 59.0005i 1.91121i −0.294646 0.955607i \(-0.595202\pi\)
0.294646 0.955607i \(-0.404798\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.5000 26.8468i −0.500000 0.866025i
\(962\) 0 0
\(963\) −34.4217 + 29.4288i −1.10922 + 0.948330i
\(964\) 55.3939 1.78412
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(968\) −80.0908 46.2405i −2.57422 1.48622i
\(969\) 23.6464 + 10.8940i 0.759633 + 0.349964i
\(970\) 0 0
\(971\) 31.1127i 0.998454i −0.866471 0.499227i \(-0.833617\pi\)
0.866471 0.499227i \(-0.166383\pi\)
\(972\) −27.9444 + 13.8243i −0.896317 + 0.443415i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 31.4444 + 18.1544i 1.00600 + 0.580812i 0.910017 0.414572i \(-0.136069\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) 0.449490 + 4.87832i 0.0143731 + 0.155991i
\(979\) 18.6969 + 32.3840i 0.597557 + 1.03500i
\(980\) 0 0
\(981\) 0 0
\(982\) 41.4393 1.32238
\(983\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) 30.6969 + 43.4120i 0.978583 + 1.38392i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 44.8434 4.13188i 1.42306 0.131121i
\(994\) 0 0
\(995\) 0 0
\(996\) 8.89898 + 4.09978i 0.281975 + 0.129906i
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 61.8610i 1.95818i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.2.l.a.59.2 yes 4
3.2 odd 2 216.2.l.a.179.1 4
4.3 odd 2 288.2.p.a.239.2 4
8.3 odd 2 CM 72.2.l.a.59.2 yes 4
8.5 even 2 288.2.p.a.239.2 4
9.2 odd 6 inner 72.2.l.a.11.2 4
9.4 even 3 648.2.f.a.323.3 4
9.5 odd 6 648.2.f.a.323.2 4
9.7 even 3 216.2.l.a.35.1 4
12.11 even 2 864.2.p.a.719.1 4
24.5 odd 2 864.2.p.a.719.1 4
24.11 even 2 216.2.l.a.179.1 4
36.7 odd 6 864.2.p.a.143.1 4
36.11 even 6 288.2.p.a.47.2 4
36.23 even 6 2592.2.f.a.1295.1 4
36.31 odd 6 2592.2.f.a.1295.4 4
72.5 odd 6 2592.2.f.a.1295.1 4
72.11 even 6 inner 72.2.l.a.11.2 4
72.13 even 6 2592.2.f.a.1295.4 4
72.29 odd 6 288.2.p.a.47.2 4
72.43 odd 6 216.2.l.a.35.1 4
72.59 even 6 648.2.f.a.323.2 4
72.61 even 6 864.2.p.a.143.1 4
72.67 odd 6 648.2.f.a.323.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.l.a.11.2 4 9.2 odd 6 inner
72.2.l.a.11.2 4 72.11 even 6 inner
72.2.l.a.59.2 yes 4 1.1 even 1 trivial
72.2.l.a.59.2 yes 4 8.3 odd 2 CM
216.2.l.a.35.1 4 9.7 even 3
216.2.l.a.35.1 4 72.43 odd 6
216.2.l.a.179.1 4 3.2 odd 2
216.2.l.a.179.1 4 24.11 even 2
288.2.p.a.47.2 4 36.11 even 6
288.2.p.a.47.2 4 72.29 odd 6
288.2.p.a.239.2 4 4.3 odd 2
288.2.p.a.239.2 4 8.5 even 2
648.2.f.a.323.2 4 9.5 odd 6
648.2.f.a.323.2 4 72.59 even 6
648.2.f.a.323.3 4 9.4 even 3
648.2.f.a.323.3 4 72.67 odd 6
864.2.p.a.143.1 4 36.7 odd 6
864.2.p.a.143.1 4 72.61 even 6
864.2.p.a.719.1 4 12.11 even 2
864.2.p.a.719.1 4 24.5 odd 2
2592.2.f.a.1295.1 4 36.23 even 6
2592.2.f.a.1295.1 4 72.5 odd 6
2592.2.f.a.1295.4 4 36.31 odd 6
2592.2.f.a.1295.4 4 72.13 even 6