Newspace parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.574922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(55\) | \(65\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 |
|
−1.22474 | − | 0.707107i | 1.72474 | − | 0.158919i | 1.00000 | + | 1.73205i | 0 | −2.22474 | − | 1.02494i | 0 | − | 2.82843i | 2.94949 | − | 0.548188i | 0 | |||||||||||||||||||
11.2 | 1.22474 | + | 0.707107i | −0.724745 | − | 1.57313i | 1.00000 | + | 1.73205i | 0 | 0.224745 | − | 2.43916i | 0 | 2.82843i | −1.94949 | + | 2.28024i | 0 | |||||||||||||||||||||
59.1 | −1.22474 | + | 0.707107i | 1.72474 | + | 0.158919i | 1.00000 | − | 1.73205i | 0 | −2.22474 | + | 1.02494i | 0 | 2.82843i | 2.94949 | + | 0.548188i | 0 | |||||||||||||||||||||
59.2 | 1.22474 | − | 0.707107i | −0.724745 | + | 1.57313i | 1.00000 | − | 1.73205i | 0 | 0.224745 | + | 2.43916i | 0 | − | 2.82843i | −1.94949 | − | 2.28024i | 0 | ||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-2}) \) |
9.d | odd | 6 | 1 | inner |
72.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.2.l.a | ✓ | 4 |
3.b | odd | 2 | 1 | 216.2.l.a | 4 | ||
4.b | odd | 2 | 1 | 288.2.p.a | 4 | ||
8.b | even | 2 | 1 | 288.2.p.a | 4 | ||
8.d | odd | 2 | 1 | CM | 72.2.l.a | ✓ | 4 |
9.c | even | 3 | 1 | 216.2.l.a | 4 | ||
9.c | even | 3 | 1 | 648.2.f.a | 4 | ||
9.d | odd | 6 | 1 | inner | 72.2.l.a | ✓ | 4 |
9.d | odd | 6 | 1 | 648.2.f.a | 4 | ||
12.b | even | 2 | 1 | 864.2.p.a | 4 | ||
24.f | even | 2 | 1 | 216.2.l.a | 4 | ||
24.h | odd | 2 | 1 | 864.2.p.a | 4 | ||
36.f | odd | 6 | 1 | 864.2.p.a | 4 | ||
36.f | odd | 6 | 1 | 2592.2.f.a | 4 | ||
36.h | even | 6 | 1 | 288.2.p.a | 4 | ||
36.h | even | 6 | 1 | 2592.2.f.a | 4 | ||
72.j | odd | 6 | 1 | 288.2.p.a | 4 | ||
72.j | odd | 6 | 1 | 2592.2.f.a | 4 | ||
72.l | even | 6 | 1 | inner | 72.2.l.a | ✓ | 4 |
72.l | even | 6 | 1 | 648.2.f.a | 4 | ||
72.n | even | 6 | 1 | 864.2.p.a | 4 | ||
72.n | even | 6 | 1 | 2592.2.f.a | 4 | ||
72.p | odd | 6 | 1 | 216.2.l.a | 4 | ||
72.p | odd | 6 | 1 | 648.2.f.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.2.l.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
72.2.l.a | ✓ | 4 | 8.d | odd | 2 | 1 | CM |
72.2.l.a | ✓ | 4 | 9.d | odd | 6 | 1 | inner |
72.2.l.a | ✓ | 4 | 72.l | even | 6 | 1 | inner |
216.2.l.a | 4 | 3.b | odd | 2 | 1 | ||
216.2.l.a | 4 | 9.c | even | 3 | 1 | ||
216.2.l.a | 4 | 24.f | even | 2 | 1 | ||
216.2.l.a | 4 | 72.p | odd | 6 | 1 | ||
288.2.p.a | 4 | 4.b | odd | 2 | 1 | ||
288.2.p.a | 4 | 8.b | even | 2 | 1 | ||
288.2.p.a | 4 | 36.h | even | 6 | 1 | ||
288.2.p.a | 4 | 72.j | odd | 6 | 1 | ||
648.2.f.a | 4 | 9.c | even | 3 | 1 | ||
648.2.f.a | 4 | 9.d | odd | 6 | 1 | ||
648.2.f.a | 4 | 72.l | even | 6 | 1 | ||
648.2.f.a | 4 | 72.p | odd | 6 | 1 | ||
864.2.p.a | 4 | 12.b | even | 2 | 1 | ||
864.2.p.a | 4 | 24.h | odd | 2 | 1 | ||
864.2.p.a | 4 | 36.f | odd | 6 | 1 | ||
864.2.p.a | 4 | 72.n | even | 6 | 1 | ||
2592.2.f.a | 4 | 36.f | odd | 6 | 1 | ||
2592.2.f.a | 4 | 36.h | even | 6 | 1 | ||
2592.2.f.a | 4 | 72.j | odd | 6 | 1 | ||
2592.2.f.a | 4 | 72.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} \)
acting on \(S_{2}^{\mathrm{new}}(72, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 2T^{2} + 4 \)
$3$
\( T^{4} - 2 T^{3} + T^{2} - 6 T + 9 \)
$5$
\( T^{4} \)
$7$
\( T^{4} \)
$11$
\( T^{4} + 18 T^{3} + 133 T^{2} + \cdots + 625 \)
$13$
\( T^{4} \)
$17$
\( T^{4} + 70T^{2} + 361 \)
$19$
\( (T^{2} + 2 T - 53)^{2} \)
$23$
\( T^{4} \)
$29$
\( T^{4} \)
$31$
\( T^{4} \)
$37$
\( T^{4} \)
$41$
\( T^{4} - 18 T^{3} + 103 T^{2} + \cdots + 25 \)
$43$
\( T^{4} + 10 T^{3} + 129 T^{2} + \cdots + 841 \)
$47$
\( T^{4} \)
$53$
\( T^{4} \)
$59$
\( T^{4} - 18 T^{3} + 85 T^{2} + \cdots + 529 \)
$61$
\( T^{4} \)
$67$
\( T^{4} - 14 T^{3} + 201 T^{2} + \cdots + 25 \)
$71$
\( T^{4} \)
$73$
\( (T^{2} + 2 T - 215)^{2} \)
$79$
\( T^{4} \)
$83$
\( T^{4} - 8T^{2} + 64 \)
$89$
\( (T^{2} + 32)^{2} \)
$97$
\( T^{4} + 10 T^{3} + 291 T^{2} + \cdots + 36481 \)
show more
show less