Properties

Label 72.2.i.a
Level 72
Weight 2
Character orbit 72.i
Analytic conductor 0.575
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 72.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + 2 \zeta_{6} ) q^{3} + ( 1 - \zeta_{6} ) q^{5} + 3 \zeta_{6} q^{7} -3 q^{9} +O(q^{10})\) \( q + ( -1 + 2 \zeta_{6} ) q^{3} + ( 1 - \zeta_{6} ) q^{5} + 3 \zeta_{6} q^{7} -3 q^{9} -5 \zeta_{6} q^{11} + ( 5 - 5 \zeta_{6} ) q^{13} + ( 1 + \zeta_{6} ) q^{15} -2 q^{17} -4 q^{19} + ( -6 + 3 \zeta_{6} ) q^{21} + ( 1 - \zeta_{6} ) q^{23} + 4 \zeta_{6} q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} + 9 \zeta_{6} q^{29} + ( 1 - \zeta_{6} ) q^{31} + ( 10 - 5 \zeta_{6} ) q^{33} + 3 q^{35} -6 q^{37} + ( 5 + 5 \zeta_{6} ) q^{39} + ( -3 + 3 \zeta_{6} ) q^{41} -\zeta_{6} q^{43} + ( -3 + 3 \zeta_{6} ) q^{45} + 3 \zeta_{6} q^{47} + ( -2 + 2 \zeta_{6} ) q^{49} + ( 2 - 4 \zeta_{6} ) q^{51} + 2 q^{53} -5 q^{55} + ( 4 - 8 \zeta_{6} ) q^{57} + ( -11 + 11 \zeta_{6} ) q^{59} -7 \zeta_{6} q^{61} -9 \zeta_{6} q^{63} -5 \zeta_{6} q^{65} + ( 1 - \zeta_{6} ) q^{67} + ( 1 + \zeta_{6} ) q^{69} + 4 q^{71} -2 q^{73} + ( -8 + 4 \zeta_{6} ) q^{75} + ( 15 - 15 \zeta_{6} ) q^{77} -\zeta_{6} q^{79} + 9 q^{81} -\zeta_{6} q^{83} + ( -2 + 2 \zeta_{6} ) q^{85} + ( -18 + 9 \zeta_{6} ) q^{87} -18 q^{89} + 15 q^{91} + ( 1 + \zeta_{6} ) q^{93} + ( -4 + 4 \zeta_{6} ) q^{95} + 13 \zeta_{6} q^{97} + 15 \zeta_{6} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{5} + 3q^{7} - 6q^{9} + O(q^{10}) \) \( 2q + q^{5} + 3q^{7} - 6q^{9} - 5q^{11} + 5q^{13} + 3q^{15} - 4q^{17} - 8q^{19} - 9q^{21} + q^{23} + 4q^{25} + 9q^{29} + q^{31} + 15q^{33} + 6q^{35} - 12q^{37} + 15q^{39} - 3q^{41} - q^{43} - 3q^{45} + 3q^{47} - 2q^{49} + 4q^{53} - 10q^{55} - 11q^{59} - 7q^{61} - 9q^{63} - 5q^{65} + q^{67} + 3q^{69} + 8q^{71} - 4q^{73} - 12q^{75} + 15q^{77} - q^{79} + 18q^{81} - q^{83} - 2q^{85} - 27q^{87} - 36q^{89} + 30q^{91} + 3q^{93} - 4q^{95} + 13q^{97} + 15q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.73205i 0 0.500000 + 0.866025i 0 1.50000 2.59808i 0 −3.00000 0
49.1 0 1.73205i 0 0.500000 0.866025i 0 1.50000 + 2.59808i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.2.i.a 2
3.b odd 2 1 216.2.i.a 2
4.b odd 2 1 144.2.i.b 2
8.b even 2 1 576.2.i.d 2
8.d odd 2 1 576.2.i.c 2
9.c even 3 1 inner 72.2.i.a 2
9.c even 3 1 648.2.a.a 1
9.d odd 6 1 216.2.i.a 2
9.d odd 6 1 648.2.a.c 1
12.b even 2 1 432.2.i.a 2
24.f even 2 1 1728.2.i.g 2
24.h odd 2 1 1728.2.i.h 2
36.f odd 6 1 144.2.i.b 2
36.f odd 6 1 1296.2.a.e 1
36.h even 6 1 432.2.i.a 2
36.h even 6 1 1296.2.a.i 1
72.j odd 6 1 1728.2.i.h 2
72.j odd 6 1 5184.2.a.i 1
72.l even 6 1 1728.2.i.g 2
72.l even 6 1 5184.2.a.n 1
72.n even 6 1 576.2.i.d 2
72.n even 6 1 5184.2.a.s 1
72.p odd 6 1 576.2.i.c 2
72.p odd 6 1 5184.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.2.i.a 2 1.a even 1 1 trivial
72.2.i.a 2 9.c even 3 1 inner
144.2.i.b 2 4.b odd 2 1
144.2.i.b 2 36.f odd 6 1
216.2.i.a 2 3.b odd 2 1
216.2.i.a 2 9.d odd 6 1
432.2.i.a 2 12.b even 2 1
432.2.i.a 2 36.h even 6 1
576.2.i.c 2 8.d odd 2 1
576.2.i.c 2 72.p odd 6 1
576.2.i.d 2 8.b even 2 1
576.2.i.d 2 72.n even 6 1
648.2.a.a 1 9.c even 3 1
648.2.a.c 1 9.d odd 6 1
1296.2.a.e 1 36.f odd 6 1
1296.2.a.i 1 36.h even 6 1
1728.2.i.g 2 24.f even 2 1
1728.2.i.g 2 72.l even 6 1
1728.2.i.h 2 24.h odd 2 1
1728.2.i.h 2 72.j odd 6 1
5184.2.a.i 1 72.j odd 6 1
5184.2.a.n 1 72.l even 6 1
5184.2.a.s 1 72.n even 6 1
5184.2.a.x 1 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(72, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + 3 T^{2} \)
$5$ \( 1 - T - 4 T^{2} - 5 T^{3} + 25 T^{4} \)
$7$ \( 1 - 3 T + 2 T^{2} - 21 T^{3} + 49 T^{4} \)
$11$ \( 1 + 5 T + 14 T^{2} + 55 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 7 T + 13 T^{2} )( 1 + 2 T + 13 T^{2} ) \)
$17$ \( ( 1 + 2 T + 17 T^{2} )^{2} \)
$19$ \( ( 1 + 4 T + 19 T^{2} )^{2} \)
$23$ \( 1 - T - 22 T^{2} - 23 T^{3} + 529 T^{4} \)
$29$ \( 1 - 9 T + 52 T^{2} - 261 T^{3} + 841 T^{4} \)
$31$ \( 1 - T - 30 T^{2} - 31 T^{3} + 961 T^{4} \)
$37$ \( ( 1 + 6 T + 37 T^{2} )^{2} \)
$41$ \( 1 + 3 T - 32 T^{2} + 123 T^{3} + 1681 T^{4} \)
$43$ \( 1 + T - 42 T^{2} + 43 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 3 T - 38 T^{2} - 141 T^{3} + 2209 T^{4} \)
$53$ \( ( 1 - 2 T + 53 T^{2} )^{2} \)
$59$ \( 1 + 11 T + 62 T^{2} + 649 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 7 T - 12 T^{2} + 427 T^{3} + 3721 T^{4} \)
$67$ \( 1 - T - 66 T^{2} - 67 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 4 T + 71 T^{2} )^{2} \)
$73$ \( ( 1 + 2 T + 73 T^{2} )^{2} \)
$79$ \( 1 + T - 78 T^{2} + 79 T^{3} + 6241 T^{4} \)
$83$ \( 1 + T - 82 T^{2} + 83 T^{3} + 6889 T^{4} \)
$89$ \( ( 1 + 18 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 13 T + 72 T^{2} - 1261 T^{3} + 9409 T^{4} \)
show more
show less