Properties

Label 72.2.f.a
Level $72$
Weight $2$
Character orbit 72.f
Analytic conductor $0.575$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,2,Mod(35,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.35");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 72.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + 1) q^{4} + (\beta_{2} - 2 \beta_1) q^{5} - 2 \beta_{3} q^{7} + 2 \beta_{2} q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{3} + 1) q^{4} + (\beta_{2} - 2 \beta_1) q^{5} - 2 \beta_{3} q^{7} + 2 \beta_{2} q^{8} + ( - \beta_{3} - 3) q^{10} - 2 \beta_{2} q^{11} + 2 \beta_{3} q^{13} + ( - 4 \beta_{2} + 2 \beta_1) q^{14} + (2 \beta_{3} - 2) q^{16} + \beta_{2} q^{17} - 4 q^{19} + ( - 2 \beta_{2} - 2 \beta_1) q^{20} + ( - 2 \beta_{3} + 2) q^{22} + ( - 2 \beta_{2} + 4 \beta_1) q^{23} + q^{25} + (4 \beta_{2} - 2 \beta_1) q^{26} + ( - 2 \beta_{3} + 6) q^{28} + ( - \beta_{2} + 2 \beta_1) q^{29} + 2 \beta_{3} q^{31} + (4 \beta_{2} - 4 \beta_1) q^{32} + (\beta_{3} - 1) q^{34} + 6 \beta_{2} q^{35} - 4 \beta_1 q^{38} - 4 \beta_{3} q^{40} + \beta_{2} q^{41} + 8 q^{43} + ( - 4 \beta_{2} + 4 \beta_1) q^{44} + (2 \beta_{3} + 6) q^{46} + (2 \beta_{2} - 4 \beta_1) q^{47} - 5 q^{49} + \beta_1 q^{50} + (2 \beta_{3} - 6) q^{52} + ( - 3 \beta_{2} + 6 \beta_1) q^{53} + 4 \beta_{3} q^{55} + ( - 4 \beta_{2} + 8 \beta_1) q^{56} + (\beta_{3} + 3) q^{58} - 8 \beta_{2} q^{59} - 8 \beta_{3} q^{61} + (4 \beta_{2} - 2 \beta_1) q^{62} - 8 q^{64} - 6 \beta_{2} q^{65} - 4 q^{67} + (2 \beta_{2} - 2 \beta_1) q^{68} + (6 \beta_{3} - 6) q^{70} + (6 \beta_{2} - 12 \beta_1) q^{71} - 4 q^{73} + ( - 4 \beta_{3} - 4) q^{76} + (4 \beta_{2} - 8 \beta_1) q^{77} - 2 \beta_{3} q^{79} + ( - 8 \beta_{2} + 4 \beta_1) q^{80} + (\beta_{3} - 1) q^{82} + 10 \beta_{2} q^{83} - 2 \beta_{3} q^{85} + 8 \beta_1 q^{86} + 8 q^{88} - 5 \beta_{2} q^{89} + 12 q^{91} + (4 \beta_{2} + 4 \beta_1) q^{92} + ( - 2 \beta_{3} - 6) q^{94} + ( - 4 \beta_{2} + 8 \beta_1) q^{95} + 8 q^{97} - 5 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{4} - 12 q^{10} - 8 q^{16} - 16 q^{19} + 8 q^{22} + 4 q^{25} + 24 q^{28} - 4 q^{34} + 32 q^{43} + 24 q^{46} - 20 q^{49} - 24 q^{52} + 12 q^{58} - 32 q^{64} - 16 q^{67} - 24 q^{70} - 16 q^{73} - 16 q^{76} - 4 q^{82} + 32 q^{88} + 48 q^{91} - 24 q^{94} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
35.1
−1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i 0 1.00000 + 1.73205i 2.44949 0 3.46410i 2.82843i 0 −3.00000 1.73205i
35.2 −1.22474 + 0.707107i 0 1.00000 1.73205i 2.44949 0 3.46410i 2.82843i 0 −3.00000 + 1.73205i
35.3 1.22474 0.707107i 0 1.00000 1.73205i −2.44949 0 3.46410i 2.82843i 0 −3.00000 + 1.73205i
35.4 1.22474 + 0.707107i 0 1.00000 + 1.73205i −2.44949 0 3.46410i 2.82843i 0 −3.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.2.f.a 4
3.b odd 2 1 inner 72.2.f.a 4
4.b odd 2 1 288.2.f.a 4
5.b even 2 1 1800.2.b.c 4
5.c odd 4 2 1800.2.m.c 8
8.b even 2 1 288.2.f.a 4
8.d odd 2 1 inner 72.2.f.a 4
9.c even 3 1 648.2.l.a 4
9.c even 3 1 648.2.l.c 4
9.d odd 6 1 648.2.l.a 4
9.d odd 6 1 648.2.l.c 4
12.b even 2 1 288.2.f.a 4
15.d odd 2 1 1800.2.b.c 4
15.e even 4 2 1800.2.m.c 8
16.e even 4 2 2304.2.c.i 8
16.f odd 4 2 2304.2.c.i 8
20.d odd 2 1 7200.2.b.c 4
20.e even 4 2 7200.2.m.c 8
24.f even 2 1 inner 72.2.f.a 4
24.h odd 2 1 288.2.f.a 4
36.f odd 6 1 2592.2.p.a 4
36.f odd 6 1 2592.2.p.c 4
36.h even 6 1 2592.2.p.a 4
36.h even 6 1 2592.2.p.c 4
40.e odd 2 1 1800.2.b.c 4
40.f even 2 1 7200.2.b.c 4
40.i odd 4 2 7200.2.m.c 8
40.k even 4 2 1800.2.m.c 8
48.i odd 4 2 2304.2.c.i 8
48.k even 4 2 2304.2.c.i 8
60.h even 2 1 7200.2.b.c 4
60.l odd 4 2 7200.2.m.c 8
72.j odd 6 1 2592.2.p.a 4
72.j odd 6 1 2592.2.p.c 4
72.l even 6 1 648.2.l.a 4
72.l even 6 1 648.2.l.c 4
72.n even 6 1 2592.2.p.a 4
72.n even 6 1 2592.2.p.c 4
72.p odd 6 1 648.2.l.a 4
72.p odd 6 1 648.2.l.c 4
120.i odd 2 1 7200.2.b.c 4
120.m even 2 1 1800.2.b.c 4
120.q odd 4 2 1800.2.m.c 8
120.w even 4 2 7200.2.m.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.2.f.a 4 1.a even 1 1 trivial
72.2.f.a 4 3.b odd 2 1 inner
72.2.f.a 4 8.d odd 2 1 inner
72.2.f.a 4 24.f even 2 1 inner
288.2.f.a 4 4.b odd 2 1
288.2.f.a 4 8.b even 2 1
288.2.f.a 4 12.b even 2 1
288.2.f.a 4 24.h odd 2 1
648.2.l.a 4 9.c even 3 1
648.2.l.a 4 9.d odd 6 1
648.2.l.a 4 72.l even 6 1
648.2.l.a 4 72.p odd 6 1
648.2.l.c 4 9.c even 3 1
648.2.l.c 4 9.d odd 6 1
648.2.l.c 4 72.l even 6 1
648.2.l.c 4 72.p odd 6 1
1800.2.b.c 4 5.b even 2 1
1800.2.b.c 4 15.d odd 2 1
1800.2.b.c 4 40.e odd 2 1
1800.2.b.c 4 120.m even 2 1
1800.2.m.c 8 5.c odd 4 2
1800.2.m.c 8 15.e even 4 2
1800.2.m.c 8 40.k even 4 2
1800.2.m.c 8 120.q odd 4 2
2304.2.c.i 8 16.e even 4 2
2304.2.c.i 8 16.f odd 4 2
2304.2.c.i 8 48.i odd 4 2
2304.2.c.i 8 48.k even 4 2
2592.2.p.a 4 36.f odd 6 1
2592.2.p.a 4 36.h even 6 1
2592.2.p.a 4 72.j odd 6 1
2592.2.p.a 4 72.n even 6 1
2592.2.p.c 4 36.f odd 6 1
2592.2.p.c 4 36.h even 6 1
2592.2.p.c 4 72.j odd 6 1
2592.2.p.c 4 72.n even 6 1
7200.2.b.c 4 20.d odd 2 1
7200.2.b.c 4 40.f even 2 1
7200.2.b.c 4 60.h even 2 1
7200.2.b.c 4 120.i odd 2 1
7200.2.m.c 8 20.e even 4 2
7200.2.m.c 8 40.i odd 4 2
7200.2.m.c 8 60.l odd 4 2
7200.2.m.c 8 120.w even 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(72, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$19$ \( (T + 4)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$43$ \( (T - 8)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 128)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 192)^{2} \) Copy content Toggle raw display
$67$ \( (T + 4)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 216)^{2} \) Copy content Toggle raw display
$73$ \( (T + 4)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 200)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$97$ \( (T - 8)^{4} \) Copy content Toggle raw display
show more
show less