Defining parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(72, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 6 | 10 |
Cusp forms | 8 | 4 | 4 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
72.2.d.a | $2$ | $0.575$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta q^{2}-2q^{4}+2\beta q^{5}+2q^{7}-2\beta q^{8}+\cdots\) |
72.2.d.b | $2$ | $0.575$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(-4\) | \(q+(i+1)q^{2}+2 i q^{4}-2 i q^{5}-2 q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(72, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)