Properties

Label 72.2.d
Level $72$
Weight $2$
Character orbit 72.d
Rep. character $\chi_{72}(37,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $24$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 72.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(72, [\chi])\).

Total New Old
Modular forms 16 6 10
Cusp forms 8 4 4
Eisenstein series 8 2 6

Trace form

\( 4 q + 2 q^{2} - 4 q^{4} - 4 q^{8} + O(q^{10}) \) \( 4 q + 2 q^{2} - 4 q^{4} - 4 q^{8} - 4 q^{10} - 4 q^{14} + 4 q^{17} + 8 q^{20} + 16 q^{22} - 8 q^{23} - 4 q^{25} + 8 q^{26} - 8 q^{28} - 16 q^{31} - 8 q^{32} + 4 q^{34} - 8 q^{38} + 24 q^{40} - 4 q^{41} - 8 q^{46} + 24 q^{47} - 12 q^{49} + 2 q^{50} + 16 q^{52} + 32 q^{55} + 8 q^{56} - 20 q^{58} + 4 q^{62} - 16 q^{64} - 16 q^{65} - 24 q^{70} - 24 q^{71} + 16 q^{73} - 16 q^{74} - 16 q^{76} - 4 q^{82} + 8 q^{86} - 32 q^{88} + 20 q^{89} + 24 q^{94} + 16 q^{95} - 6 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.2.d.a 72.d 8.b $2$ $0.575$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-6}) \) \(0\) \(0\) \(0\) \(4\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}-2q^{4}+2\beta q^{5}+2q^{7}-2\beta q^{8}+\cdots\)
72.2.d.b 72.d 8.b $2$ $0.575$ \(\Q(\sqrt{-1}) \) None \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+i)q^{2}+2iq^{4}-2iq^{5}-2q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(72, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)