Defining parameters
| Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 72.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(72))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 20 | 1 | 19 |
| Cusp forms | 5 | 1 | 4 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(5\) | \(1\) | \(4\) | \(1\) | \(1\) | \(0\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(6\) | \(0\) | \(6\) | \(2\) | \(0\) | \(2\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(9\) | \(0\) | \(9\) | \(2\) | \(0\) | \(2\) | \(7\) | \(0\) | \(7\) | ||||
| Minus space | \(-\) | \(11\) | \(1\) | \(10\) | \(3\) | \(1\) | \(2\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(72))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
| 72.2.a.a | $1$ | $0.575$ | \(\Q\) | None | \(0\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | \(q+2q^{5}-4q^{11}-2q^{13}-2q^{17}-4q^{19}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(72))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(72)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)