Properties

Label 72.16.a.h
Level $72$
Weight $16$
Character orbit 72.a
Self dual yes
Analytic conductor $102.739$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,16,Mod(1,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 16, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-26944] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.739323672\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 289882x^{2} - 60469800x - 1406031219 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{8}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 6736) q^{5} + (\beta_{2} + \beta_1 + 103044) q^{7} + (\beta_{3} - 12 \beta_{2} + \cdots - 10575424) q^{11} + ( - 4 \beta_{3} + 12 \beta_{2} + \cdots + 39777226) q^{13} + ( - 20 \beta_{3} - 784 \beta_{2} + \cdots + 105700960) q^{17}+ \cdots + (6293712 \beta_{3} + \cdots - 31757930299186) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 26944 q^{5} + 412176 q^{7} - 42301696 q^{11} + 159108904 q^{13} + 422803840 q^{17} - 1399441312 q^{19} - 8256921088 q^{23} + 8729015756 q^{25} + 28527814464 q^{29} + 63433875344 q^{31} + 73256909568 q^{35}+ \cdots - 127031721196744 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 289882x^{2} - 60469800x - 1406031219 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 8\nu^{3} - 528\nu^{2} - 2266568\nu - 286289952 ) / 735 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -136\nu^{3} + 39216\nu^{2} + 29036296\nu + 483913344 ) / 735 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 272\nu^{3} - 58272\nu^{2} - 23760272\nu - 3889837248 ) / 245 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 4\beta_{2} - 34\beta_1 ) / 165888 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 157\beta_{3} + 2644\beta_{2} + 28934\beta _1 + 12021986304 ) / 82944 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 304045\beta_{3} + 1482292\beta_{2} + 9427334\beta _1 + 7523410636800 ) / 165888 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−26.6475
624.723
−369.492
−228.584
0 0 0 −314788. 0 −557948. 0 0 0
1.2 0 0 0 50674.5 0 1.20768e6 0 0 0
1.3 0 0 0 96049.6 0 2.88558e6 0 0 0
1.4 0 0 0 141119. 0 −3.12314e6 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.16.a.h 4
3.b odd 2 1 72.16.a.i yes 4
4.b odd 2 1 144.16.a.w 4
12.b even 2 1 144.16.a.x 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.16.a.h 4 1.a even 1 1 trivial
72.16.a.i yes 4 3.b odd 2 1
144.16.a.w 4 4.b odd 2 1
144.16.a.x 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 26944T_{5}^{3} - 65036674560T_{5}^{2} + 7363159855513600T_{5} - 216216684950872064000 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(72))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 60\!\cdots\!28 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 56\!\cdots\!32 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 89\!\cdots\!76 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 43\!\cdots\!12 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 24\!\cdots\!04 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 59\!\cdots\!72 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 23\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 83\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 28\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 12\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 17\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 27\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 34\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 36\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 10\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 25\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 78\!\cdots\!52 \) Copy content Toggle raw display
show more
show less