Properties

Label 72.11.p.a
Level $72$
Weight $11$
Character orbit 72.p
Analytic conductor $45.746$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,11,Mod(43,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 11, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.43"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 72.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7457221925\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 32 \beta_{2} q^{2} + ( - 11 \beta_{3} + 241 \beta_{2} + 11 \beta_1) q^{3} + (1024 \beta_{2} - 1024) q^{4} + (7712 \beta_{2} + 352 \beta_1 - 7712) q^{6} - 32768 q^{8} + (57113 \beta_{2} + 5302 \beta_1 - 57113) q^{9}+ \cdots + ( - 3357970175 \beta_{3} + \cdots + 5084189137) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 64 q^{2} + 482 q^{3} - 2048 q^{4} - 15424 q^{6} - 131072 q^{8} - 114226 q^{9} - 97426 q^{11} - 987136 q^{12} - 2097152 q^{16} - 1647364 q^{17} - 7310464 q^{18} - 6707452 q^{19} + 3117632 q^{22} - 15794176 q^{24}+ \cdots + 11128582276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
16.0000 27.7128i 93.5556 224.268i −512.000 886.810i 0 −4718.22 6180.98i 0 −32768.0 −41543.7 41963.1i 0
43.2 16.0000 27.7128i 147.444 193.156i −512.000 886.810i 0 −2993.78 7176.59i 0 −32768.0 −15569.3 56959.5i 0
67.1 16.0000 + 27.7128i 93.5556 + 224.268i −512.000 + 886.810i 0 −4718.22 + 6180.98i 0 −32768.0 −41543.7 + 41963.1i 0
67.2 16.0000 + 27.7128i 147.444 + 193.156i −512.000 + 886.810i 0 −2993.78 + 7176.59i 0 −32768.0 −15569.3 + 56959.5i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
9.c even 3 1 inner
72.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.11.p.a 4
8.d odd 2 1 CM 72.11.p.a 4
9.c even 3 1 inner 72.11.p.a 4
72.p odd 6 1 inner 72.11.p.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.11.p.a 4 1.a even 1 1 trivial
72.11.p.a 4 8.d odd 2 1 CM
72.11.p.a 4 9.c even 3 1 inner
72.11.p.a 4 72.p odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{11}^{\mathrm{new}}(72, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 32 T + 1024)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 3486784401 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 46\!\cdots\!29 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + \cdots - 5369529664223)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 7145720690327)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 15\!\cdots\!29 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 35\!\cdots\!01 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 46\!\cdots\!01 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 47\!\cdots\!29 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 10\!\cdots\!23)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + \cdots + 92\!\cdots\!24)^{2} \) Copy content Toggle raw display
$89$ \( (T + 11116019374)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 15\!\cdots\!01 \) Copy content Toggle raw display
show more
show less