Properties

Label 72.11.e.a
Level $72$
Weight $11$
Character orbit 72.e
Analytic conductor $45.746$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,11,Mod(17,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 11, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.17"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 72.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7457221925\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 25027x^{2} + 25028x + 156700326 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 1295 \beta_1) q^{5} + (\beta_{2} + 2580) q^{7} + ( - 42 \beta_{3} - 54764 \beta_1) q^{11} + (41 \beta_{2} + 102592) q^{13} + ( - 338 \beta_{3} - 457345 \beta_1) q^{17} + (296 \beta_{2} + 656432) q^{19}+ \cdots + (2206178 \beta_{2} + 2690875040) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10320 q^{7} + 410368 q^{13} + 2625728 q^{19} - 32028580 q^{25} + 2365328 q^{31} - 79884936 q^{37} - 375666656 q^{43} - 987925636 q^{49} - 2989700000 q^{55} - 3273564728 q^{61} - 2390998816 q^{67}+ \cdots + 10763500160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 25027x^{2} + 25028x + 156700326 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{3} - 3\nu^{2} - 25019\nu + 12510 ) / 50073 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -32\nu^{3} + 48\nu^{2} + 1201472\nu - 600744 ) / 16691 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 12\nu^{2} - 12\nu - 150168 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 48\beta _1 + 24 ) / 48 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{3} + \beta_{2} + 48\beta _1 + 600696 ) / 48 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6\beta_{3} + 12511\beta_{2} + 1802280\beta _1 + 901032 ) / 48 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
112.376 + 1.41421i
−111.376 1.41421i
−111.376 + 1.41421i
112.376 1.41421i
0 0 0 5628.61i 0 7950.05 0 0 0
17.2 0 0 0 1965.79i 0 −2790.05 0 0 0
17.3 0 0 0 1965.79i 0 −2790.05 0 0 0
17.4 0 0 0 5628.61i 0 7950.05 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.11.e.a 4
3.b odd 2 1 inner 72.11.e.a 4
4.b odd 2 1 144.11.e.c 4
12.b even 2 1 144.11.e.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.11.e.a 4 1.a even 1 1 trivial
72.11.e.a 4 3.b odd 2 1 inner
144.11.e.c 4 4.b odd 2 1
144.11.e.c 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 35545540T_{5}^{2} + 122426922208900 \) acting on \(S_{11}^{\mathrm{new}}(72, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 122426922208900 \) Copy content Toggle raw display
$7$ \( (T^{2} - 5160 T - 22181040)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 37\!\cdots\!44 \) Copy content Toggle raw display
$13$ \( (T^{2} - 205184 T - 37950618176)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 2095718172416)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 35\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots - 274102731369776)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots - 325550457908604)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 57\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots + 88\!\cdots\!56)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 64\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 32\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 12\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 47\!\cdots\!84)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots - 13\!\cdots\!24)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 18\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 76\!\cdots\!84)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 12\!\cdots\!36)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 50\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 13\!\cdots\!60)^{2} \) Copy content Toggle raw display
show more
show less