Properties

Label 72.10.l.a
Level $72$
Weight $10$
Character orbit 72.l
Analytic conductor $37.083$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,10,Mod(11,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.11"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 72.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.0825802038\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (16 \beta_{3} - 16 \beta_1) q^{2} + ( - 73 \beta_{3} - 95 \beta_{2} + 73 \beta_1) q^{3} + ( - 512 \beta_{2} + 512) q^{4} + (2336 \beta_{2} + 1520 \beta_1 - 2336) q^{6} + 8192 \beta_{3} q^{8} + ( - 1633 \beta_{2} - 13870 \beta_1 + 1633) q^{9}+ \cdots + (499112045 \beta_{3} + \cdots + 752277793) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 190 q^{3} + 1024 q^{4} - 4672 q^{6} + 3266 q^{9} + 198126 q^{11} - 194560 q^{12} - 524288 q^{16} + 1775360 q^{18} - 1980292 q^{19} + 1611200 q^{22} + 2392064 q^{24} + 3906250 q^{25} - 8720620 q^{27}+ \cdots + 2793418000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
−19.5959 11.3137i 41.9064 + 133.891i 256.000 + 443.405i 0 693.612 3097.84i 0 11585.2i −16170.7 + 11221.8i 0
11.2 19.5959 + 11.3137i −136.906 + 30.6536i 256.000 + 443.405i 0 −3029.61 948.233i 0 11585.2i 17803.7 8393.35i 0
59.1 −19.5959 + 11.3137i 41.9064 133.891i 256.000 443.405i 0 693.612 + 3097.84i 0 11585.2i −16170.7 11221.8i 0
59.2 19.5959 11.3137i −136.906 30.6536i 256.000 443.405i 0 −3029.61 + 948.233i 0 11585.2i 17803.7 + 8393.35i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
9.d odd 6 1 inner
72.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.10.l.a 4
8.d odd 2 1 CM 72.10.l.a 4
9.d odd 6 1 inner 72.10.l.a 4
72.l even 6 1 inner 72.10.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.10.l.a 4 1.a even 1 1 trivial
72.10.l.a 4 8.d odd 2 1 CM
72.10.l.a 4 9.d odd 6 1 inner
72.10.l.a 4 72.l even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{10}^{\mathrm{new}}(72, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 512 T^{2} + 262144 \) Copy content Toggle raw display
$3$ \( T^{4} + 190 T^{3} + \cdots + 387420489 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 40\!\cdots\!29 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 56\!\cdots\!09 \) Copy content Toggle raw display
$19$ \( (T^{2} + 990146 T + 12326007979)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 72\!\cdots\!89 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 24\!\cdots\!41 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 24\!\cdots\!89 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 60\!\cdots\!81 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 17\!\cdots\!61)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 52\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( (T^{2} + 21\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 54\!\cdots\!01 \) Copy content Toggle raw display
show more
show less