Properties

Label 72.1.p
Level $72$
Weight $1$
Character orbit 72.p
Rep. character $\chi_{72}(43,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 72.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(72, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 2 2 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2q - q^{2} - q^{3} - q^{4} - q^{6} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} - q^{4} - q^{6} + 2q^{8} - q^{9} + q^{11} + 2q^{12} - q^{16} - 2q^{17} + 2q^{18} - 2q^{19} + q^{22} - q^{24} - q^{25} + 2q^{27} - q^{32} + q^{33} + q^{34} - q^{36} + q^{38} + q^{41} + q^{43} - 2q^{44} - q^{48} - q^{49} - q^{50} + q^{51} - q^{54} + q^{57} + q^{59} + 2q^{64} - 2q^{66} + q^{67} + q^{68} - q^{72} - 2q^{73} - q^{75} + q^{76} - q^{81} - 2q^{82} - 2q^{83} + q^{86} + q^{88} + 4q^{89} + 2q^{96} + q^{97} + 2q^{98} - 2q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
72.1.p.a \(2\) \(0.036\) \(\Q(\sqrt{-3}) \) \(D_{3}\) \(\Q(\sqrt{-2}) \) None \(-1\) \(-1\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{2}+\zeta_{6}^{2}q^{3}-\zeta_{6}q^{4}-\zeta_{6}q^{6}+\cdots\)